
Oblivious Coopetitive Analytics
Using Hardware Enclaves

Ankur Dave, Chester Leung, Raluca Ada Popa,
Joseph E. Gonzalez, Ion Stoica (UC Berkeley)

EuroSys 2020

April 28, 2020

The need for coopetitive analytics

• Analytics can extract value from big data
• But datasets often span multiple competing parties

Example: Financial risk assessment
“How much subprime debt have all

banks issued?”• Banks want to assess
systemic risk

• This requires cooperation
among competing banks
• Sharing data creates

security, regulatory,
business, and liability
concerns

SELECT SUM(loan_amount)
FROM customer c
JOIN loan l ON c.ssn = l.ssn

WHERE credit_score < 630;

Threat model
• Network attacker can see

and modify all network
traffic but cannot access
machines
• Malicious party attackers

can additionally see and
modify computation within
their machines + collude
with other parties

240 bytes sent from
party 2 to party 3

if (c.credit_score < 630) {
result[c.ssn] +=
c.loan_amount

}

Approach 1: Cryptography

Specialized systems: Conclave, DJoin, private intersection-sum,
Prio, UnLynx, MedCo, …

• Limited functionality – cannot support rich analytics
Generic approaches: SMCQL, AgMPC
• Prohibitive overhead

Untrusted OS

Approach 2: Hardware enclaves
• Trusted code runs shielded from OS and

processes on the same host
• Memory access pattern leakage

Enclave

Secret data

Trusted code

Enclave Enclave

Remote attestation

Access pattern leakage

ID Credit score Loan amount

1 720 $2,500

2 600 $500

2 600 $250

3 600 $500

Total loans

$1,250

Access patterns leak information such as filter selectivity

SELECT SUM(loan_amount)
FROM customer c
JOIN loan l ON c.ssn = l.ssn

WHERE credit_score < 630;

Memory access

Oblivious algorithms

ID Credit score Loan amount

1 720 $2,500

2 600 $500

2 600 $250

3 600 $500

Total loans

$1,250

Oblivious algorithms hide access patterns at a performance cost

SELECT SUM(loan_amount)
FROM customer c
JOIN loan l ON c.ssn = l.ssn

WHERE credit_score < 630;

Memory access

Dummy access

Previous approaches using hardware
enclaves
Not oblivious: SCONE, Graphene, Haven, VC3
• Side channel leakage

Oblivious: Cipherbase, Opaque
• Must maintain remote copy of large datasets; expensive to update

• If applied to WAN setting, inefficient due to high-bandwidth shuffles

Oblivious Coopetitive Queries (OCQ)
• Designed for oblivious coopetitive analytics
• Supports general SQL queries with better performance than

previous approaches
• Protects against network attacker and malicious party attackers

(in the hardware enclave model)

Oblivious Coopetitive Queries (OCQ)

OCQ Planner
Jointly

Approved
Queries

Secure
Federated Plan

Party n

Party 2

Party 1

Shared
Result

Federated
Execution

Oblivious operators
on joint data

Authenticated
operators on

parties’ own data

Parties must agree
on fixed queries
and input data in

advance

Replicated across
parties

Each party must
have at least one
hardware enclave

Challenges and Techniques

1. Combining data of mixed sensitivities
→ Approach: Mixed-sensitivity algorithms

2. Query planning with sensitive cardinalities
→ Approach: Schema-aware padding

3. Oblivious queries in the wide area
→ Federated- and security-aware planner

Sensitivity propagation
Parties specify sensitivity of each table: Public or Sensitive
Propagate sensitivity according to foreign keys and operators

Demographics Region Customer

⋈

⋈Customer
c_ssn

c_name

Loan
l_id

l_ssn
c_zip

c_credit_score

Region
r_zip

r_population
l_amount

Demographics
d_id
d_zip

d_income

Foreign key
relationships

102 103 104 105 106 107

Join inSut size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

6
S

e
e
d

u
S

Mixed-sensitivity oblivious join

Joining Sensitive tables across parties
produces a mixed-sensitivity join
Mixed-sensitivity oblivious join
algorithm:
1. Sort Public and Sensitive sides

separately
2. Oblivious bitonic merge join
Up to 2.5x speedup vs. fully-oblivious
join for equal-sized tables

Schema-aware padding
• Cardinalities are particularly sensitive in the federated setting
• Naïve “filter push-up” approaches to padding are very expensive

• Find tighter padding bounds using foreign key constraints

SELECT c_zip, AVG(l_amount / d_income)
FROM customer
JOIN loan ON c_ssn = l_ssn
JOIN region ON c_zip = r_zip
JOIN demographics ON r_zip = d_zip

GROUP BY c_zip

Customer
c_ssn

c_name

Loan
l_id

l_ssn
c_zip

c_credit_score

Region
r_zip

r_population
l_amount

Demographics
d_id
d_zip

d_income

Foreign key
relationships

Federated planner

SELECT SUM(loan_amount)
FROM customer c
JOIN loan l ON c.ssn = l.ssn

WHERE credit_score < 630;

LoanCustomer

Fed Filter

Broadcast to Fed

Fed-Obl Mixed-Sensitivity
Broadcast Join

Fed-Obl Agg

Collect to
Single Site

Single-Site-Obl
Agg

Determines how to run the query
and where to run each operator

Fed: Partitioned across all parties’ enclaves

Fed-Obl: Partitioned
across enclaves +

oblivious algorithms

Both input tables Sensitive

Data movement

Data movement

Single-Site-Obl: At querier’s
enclaves + oblivious algorithms

Evaluation setup

• 5 geo-distributed parties
• ~10 MB/s bandwidth

• Synthetic data, table sizes 4.3 MB–10 GB

2SDque 2C4 60C4L DJRLQ
101

102

103

104

105

106

5
u

Q
Q

LQ
J

 t
Lm

e
 (

s)

270

27

100000

0

230

39

200000

0

74 74

0

3000

56

16

0

27000

CRmRrbLdLty

AsSLrLQ cRuQt

DJRLQ 41

DJRLQ 45

OCQ vs. prior work

• Orders of magnitude faster than SMCQL and DJoin due to trusted hardware

• Faster than Opaque because OCQ can execute initial filters in plaintext

CRPRrbLdLty AsSLrLQ cRuQt DJRLQ 41 DJRLQ 45
100

101

102

103
5

u
Q

Q
LQ

J
 t

LP
e
 (

s)

270 230

74
56

12

7.1 6.4

3.2

27
39

74

16

270

42

0 0

190 190

3.0

5.0

2utsRurced 2SDque

3ODLQtext federDted

2C4

2C4 w/SDddLQJ

2utsRurced 6SDrk 64/

Overhead of OCQ’s security

• 2.2–25x overhead vs. insecure federated or outsourced Spark SQL

Summary of OCQ’s contributions

Efficient, general framework for oblivious coopetitive analytics
1. Mixed-sensitivity oblivious join and aggregation algorithms

2. Schema-aware padding
3. Secure coopetitive query planner

