
BinRec: Dynamic Binary Lifting and 
Recompilation

Anil Altinay∗, Joseph Nash∗, Taddeus Kroes∗

Prabhu Rajasekaran, Dixin Zhou, 

Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, 

Cristiano Giuffrida, Herbert Bos, Michael Franz

∗Equal Contribution Joint-First Authors



Legacy Binaries Need Help

2

[1]

¤ Source code or 
toolchain has been lost

¤ Microsoft patched 
CVE-2017-11882 in 
Equation Editor

¤ Binary Rewriting to 
patch, reoptimize, 
instrument, or harden 
binaries



Limitations of Static Rewriting

¤ 5 challenges for static binary rewriting
¤ Code vs Data Separation
¤ Indirect Control Flow Resolution
¤ Ill-formed Code 
¤ Obfuscation
¤ External Entry Points

¤ Static approaches use heuristics since they can’t solve these 
challenges in a principled way

¤ Produce rewritten binaries with poor performance, especially 
with instrumentation

¤ Require re-implementing well known analyses within every 
framework

3



BinRec vs McSema[6]

4

-0.02

0.29

BinRec Binaries’ Overhead



BinRec Framework

5

Highlights

• Lift binaries to LLVM IR

• Enable off-the-shelf compiler transformations

• Safe Stack, ASAN, Optimizations, De-
obfuscation, CFI

• Lift and run all C/C++ benchmarks in SPEC 
CINT 2006 

• Better performing than existing lifting 
frameworks 

• Rev.ng[13] : 2.25x (static linked)

• Multiverse[7] :1.60x (w/o instrumentation)

• McSema[6] : >2x (only 4 binaries)

• BinRec :1.29x 

[9]



Leveraging Dynamic Traces to 
Overcome Static Rewriting 
Challenges



Code vs Data

¤ A statically unsolvable problem (Horspool and Marovac [3])

¤ Solution: 
¤ Copy of original program in case of inlined code and data as in 

prior work [10,11] 
¤ Dynamically observe the use of ambiguous values 
¤ Never accidentally disassemble data as code.

¤ libjpeg example [12]

7



Code vs Data in libjpeg

8

Callback function is stored in 
a struct

Constant is same as address of 
callback function

McSema mis-handles this case!



Code vs Data in libjpeg

9

Callback function is stored in 
a struct

Constant is same as address of 
callback function

McSema mis-handles this case!



Code vs Data in libjpeg

10

Callback function is stored in 
a struct

Constant is same as address of 
callback function

McSema mis-handles this case!



Indirect Control Flow

¤ Static approaches use heuristics with value set analysis 

¤ BinRec records the exact target addresses of each indirect 
control flow

ret    %pc = load i32, i32* @PC
switch %pc, label %otherwise

[ i32 &A, label %BasicBlock_A
i32 &B, label %Basicblock_B ]

11

Traces observed:
ret to A
ret to B



External Entry Points: Callbacks

12

int compare( const void* a, const void* b ) { 
….
….
}

int main() {
int arr[] = {5, 3, 1, -1};

int size = sizeof arr / sizeof *arr;
qsort( arr, size, sizeof( int ),

compare);
}

void qsort(void *base, 
size_t nel, 
size_t width, 
int (*compar)(const void *, 

const void *)) 
{

…..
…..
…..
compare(arg1, arg2);

}

Callback function

Passed to qsort function

qsort invokes callback function

Binary Code

Library Code



Support for External Entry Points

13

void qsort(void *base, 
size_t nel, 
size_t width, 
int (*compar)(const void *, 

const void *)) 
{

…..
…..
…..
compare(arg1, arg2);

} qsort invokes original callback function

Library Code

int compare_recovered( …. ) {
….
}

int main_recovered() {
….
qsort( …., compare);
}

Problem: The callback function pointer still points 
to the original callback function

Recovered Code

1

2



Support for External Entry Points

14

void qsort(void *base, 
size_t nel, 
size_t width, 
int (*compar)(const void *, 

const void *)) 
{

…..
…..
…..
compare(arg1, arg2);

} qsort invokes original callback function

Library Code

int compare_recovered( …. ) {
….
}

int main_recovered() {
….
qsort( …., compare);
}

Problem: The callback function pointer still points 
to the original callback function

Recovered Code

1

2



Support for External Entry Points

¤ Option 1: statically link library code into the analysis region
¤ Problem: High memory usage 

¤ Option 2: update code pointers
¤ Problem: Heuristics fail 

¤ Option 3: create a lookup table
¤ Problem:  Performance degradation



Support for External Entry Points

16

compare: jmp compare_recovered
void qsort(void *base, 

size_t nel, 
size_t width, 
int (*compar)(const void *, 

const void *)) 
{

…..
…..
…..
compare(arg1, arg2);

}

Original Code Region
Library Code

int compare_recovered( …. ) {
….
}

int main_recovered() {
….
qsort( …., compare);
}

Our Dynamic Approach

Recovered Code

Use original address space as 
trampolines

No need for 
arguments patching!

1.

2.

3.

4.



BinRec Architected for Coverage 

17

¤ Coverage for Dynamic Analysis

¤ Dynamic lifting engine efficiently covers paths of interest

¤ Installed handlers provides recovery and iterative improvement



BinRec Architected for Coverage 

18

¤ Coverage for Dynamic Analysis

¤ Dynamic lifting engine efficiently covers paths of interest

¤ Installed handlers provides recovery and iterative improvement



BinRec Architected for Coverage 

19

¤ Coverage for Dynamic Analysis

¤ Dynamic lifting engine efficiently covers paths of interest

¤ Installed handlers provides recovery and iterative improvement



Multi-Trace Merging

20

¤ Drive execution - Trusted inputs, fuzzing, concolic execution

¤ Build CFG – Merge basic block boundaries, control flow edges



Configurable Pass Miss Handlers

¤ Path Miss := instructions needed for the current workload were 
not observed in the initial lifting

¤ Path Miss Handlers are installed in every control flow transfer
¤ Optimized Out
¤ Report and Log
¤ Fallback 
¤ Incremental Lifting

21



Path Miss Handler: 
Incremental Lifting

¤ Use logged ‘path misses’ as points to restart lifting

22



Incremental Lifting of Bzip2

23



Correct and Performant 
Rewriting of SPEC CINT 2006

24

-0.02

0.29

BinRec Binaries’ Overhead



BinRec vs Static Rewriters

¤ Static approaches are less precise
¤ More possible behaviors -> less optimization is possible

¤ Dynamic lifting has a one-time cost (~450x on SPEC)

25

O0 mcf bzip2 sjeng libquantum
BinRec 0.83x 0.76x 0.77x 0.95x
McSema 2.31x 2.84x 3.43x 2.07x

SPEC Int Geomean O0 O3
BinRec 178480s 138379s

McSema 371s 320s

SPEC Int Geomean O3
BinRec 1.29x
Multiverse [7] 1.60x
Rev.ng[13] 2.25x



Now we can have nice things!

LLVM IR + dynamic linking support == 

No need to rewrite transformations



Address Sanitizer in BinRec

¤ ASAN: A memory access violation finding tool available in LLVM

¤ Works with off the shelf ASAN no modifications on binaries

¤ All memory accesses are instrumented

¤ Heap allocations are instrumented

¤ No stack variable symbolization -> stack allocations are not 
instrumented by ASAN

¤ ASAN runtime library links and reports violations

27
[14]



Obfuscation and Ill-formed Code

Fig. 1: Simplified example cases of dereferencing a dangling pointer for Use-After-Free under pointer-spray attack (assuming
0xdeadbeefcafebabe is the crafted pointer). The box in the middle represents dangling pointed object and each row indicates
pointer-type member variable. Assume there are five possible dangling pointers due to randomization. For better visualization,
the memory dump is shown in big-endian format.

and Data Execution Prevention (DEP) as the previous study
does. Finally, we expect that our attacker feeds untrusted
input (e.g., PDF document, JavaScript, Network Stream) to the
corresponding application parser that has heap vulnerabilities.

B. Successful Triggering of Heap Vulnerabilities

Any triggering step of heap vulnerabilities that occurs due
to out-of-bounds access5 are affected by byte-granularity heap
randomization. For example, the first use of dangling-pointer in
use-after-free guarantees to crash any application with 87.5%
(75% in 32-bit) probability as there are eight (four in 32-bit)
possible outcomes of the misinterpreted pointer alignment.

Consider the exploitation steps of use-after-free: (i) an
object is freed and a dangling pointer is created, (ii) the
attacker places a crafted object around the dangling-pointed
memory region, and (iii) the program uses the dangling pointer
as if the original object member variables (pointer member
variables) are still intact thus using attacker’s crafted pointer.
These steps imply that there are two independent heap chunk
allocations around the dangling-pointed heap area. Although
the address of each heap chunks is random, if the allocation
granularity is bigger than the pointer-width, an attacker can
spray the heap and overlap the fake object and dangling-pointer
thus successfully trigger the use-after-free without pinpointing
the exact memory addresses.

This effectiveness can be described by depicting a sim-
plified example. Figure 1 depicts an example case of deref-
erencing a dangling pointer (to access a pointer member

5In this paper, out-of-bounds access indicates memory access that crosses
heap chunk bound.

variable) after attacker launches a pointer-spray attack. For
simplicity, let’s assume attacker wants to hijack a pointer
into 0xdeadbeefcafebabe and there are five unpredictable
cases of dangling pointers which will be randomly decided at
runtime.

In Figure 1a, an attacker can hijack the target pointer
member variable with a very high chance because the heap ran-
domization follows word-granularity. The attacker can spray
the eight-byte sequence “DE AD BE EF CA FE BA BE”
sufficiently long to defragment the heap region and bypass
the randomization. However in Figure 1b, the randomization
is byte-granularity thus the attack fails with 87.5% probability
regardless of the spray; unless the pointer is composed with
same bytes (we discuss this issue at the end of this section).

The effectiveness of byte-granularity heap randomization is
not specific to particular heap vulnerabilities. We emphasize
that any exploitation step which involves the use of crafted
pointer upon out-of-bounds heap access is affected. For exam-
ple, exploitation of heap overflow, uninitialized heap access
vulnerability also involves out-of-bounds heap access [8], [11]
thus affected by byte-granularity heap randomization.

So far, the security effectiveness of byte-granularity heap
randomization seems small, as one out of eight (or four)
triggering attempts will succeed. However, this probability of
single dereferencing is not the probability of a successful
attack. Modern heap exploitation usually involves multiple
combination and repetition of such bug triggering. According
to Google Project-Zero, successful exploitation of CVE-2015-
3077 required up to 31 times of pointer confusion. As heap
exploitation involves multiple uses of crafted pointers, the
defense probability will increase exponentially. However exact

3

28.5

Unaligned / Overlapping Instructions Virtualization

Code EncryptionPacking

[15]

[16] [17]



Control-Flow Integrity in BinRec

¤ Only observed control flows are allowed
¤ C -> G disallowed

¤ Contexts are merged
¤ Performance Vs Precision

¤ Indirect CFT -> Direct CFT
¤ Ret = switch %pc, label %error

[ i32 &D, label %BB_D ]

¤ BinCFI uses an address taken heuristic over-
approximation
¤ BinRec is on average at least 25x more 

restrictive than BinCFI

29



BinRec: Dynamic Binary Lifting 
and Recompilation

¤ First of its kind dynamic trace lifting and recompilation of 
stripped binaries

¤ Heuristic free and supports obfuscated code

¤ Enables off-the-shelf transformations, which only existed for 
source code

¤ Low overhead (29%)

30



Thanks and Acknowledgements

¤ We thank our shepherd and the anonymous reviewers for their feedback. 

¤ Thanks to Alyssa Milburn for editing assistance, and Chinmay Deshpande for testing and 
ongoing efforts. 

¤ This material is based upon work partially supported by the Defense Advanced Research 
Projects Agency (DARPA) under contracts FA8750-15-C-0124 andFA8750-15-C-0085, by the 
United States Office of Naval Research (ONR) under contract N00014-17-1-2782, by the 
National Science Foundation under awards CNS-1619211and CNS-1513837. Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of the Defense Advanced Research 
Projects Agency (DARPA) or its Contracting Agents, the Office of Naval Research or its 
Contracting Agents, the National Science Foundation, or any other agency of the U.S. 
Government.

31



Citations

1. "Computer History Museum - 108" by phrenologist is 
licensed under CC BY-NC 2.0 

2. https://arstechnica.com/gadgets/2017/11/microsoft-
patches-equation-editor-flaw-without-fixing-the-source-
code/

3. R.Nigel Horspool and Nenad Marovac. An approach to 
the problem of detranslation of computerprograms. The 
Computer Journal,1980.

4. https://www.hex-rays.com/products/ida/
5. B. Dolan-Gavitt, T. Leek, J. Hodosh, W. Lee. Tappan Zee 

(North) Bridge: Mining Memory Accesses for Introspection. 
20th ACM Conference on Computer and 
Communications Security (CCS), Berlin, Germany, 
November 2013

6. https://www.trailofbits.com/research-and-
development/mcsema/

7. Erick Bauman,Zhiqiang Lin,and Kevin W Hamlen. 
Supersetdisassembly:Staticallyrewritingx86binarieswithouth
euristics. InNDSS, 2018.

8. KapilAnand,MatthewSmithson,KhaledElwazeer,AparnaKot
ha,Jim Gruen,NathanGiles,andRajeevBarua. Acompiler-
levelintermediate
representationbasedbinaryanalysisandrewritingsystem. 
InEurosys, 2013.

9. VitalyChipounov,VolodymyrKuznetsov,andGeorgeCande
a. S2E: a platform for in-vivo multi-path analysis of software 
systems. 2012

10. Pádraig O’Sullivan, Kapil Anand, Aparna Kotha, Matthew 
Smithson, Rajeev Barua, and Angelos D. 
Keromytis,RetrofittingsecurityinCOTSsoftwarewithbinaryrewr
iting, Proc. 26th IFIP TC Int. Information Security Conf. 
(SEC),2011, pp. 154–172.

11. Mingwei Zhang and R. 
Sekar,ControlflowintegrityforCOTSbinaries, Proc. 22nd 
USENIX Security Sym., 2013,pp. 337–352.

12. http://www.ijg.org/
13. AlessandroDiFederico,MathiasPayer,andGiovanniAgosta. 

Rev.Ng: 
AunifiedbinaryanalysisframeworktorecoverCFGsandfuncti
on boundaries. In Proceedings of the 26th International 
Conference on Compiler Construction,CC2017,pages131–
141,NewYork,NY,USA, 2017.ACM.

14. Andrey Konovalov, Dmitry Vyukov, LinuxCon 2015 
https://events.static.linuxfound.org/sites/events/files/slides/
LinuxCon%20North%20America%202015%20KernelAddressS
anitizer.pdf

15. Jang, Daehee, et al. "Rethinking Misalignment to Raise the 
Bar for Heap Pointer Corruption." arXiv preprint 
arXiv:1807.01023 (2018).

16. https://kindredsec.com/2020/01/07/the-basics-of-packed-
malware-manually-unpacking-upx-executables/

17. http://archeanpartners.com/modules/com_eventlist/?enc
rypted-code-1449

32

https://www.flickr.com/photos/51035766041@N01/3248153943
https://www.flickr.com/photos/51035766041@N01
https://creativecommons.org/licenses/by-nc/2.0/%3Fref=ccsearch&atype=rich
https://arstechnica.com/gadgets/2017/11/microsoft-patches-equation-editor-flaw-without-fixing-the-source-code/
https://www.hex-rays.com/products/ida/
https://www.trailofbits.com/research-and-development/mcsema/
http://www.ijg.org/
https://events.static.linuxfound.org/sites/events/files/slides/LinuxCon%2520North%2520America%25202015%2520KernelAddressSanitizer.pdf
https://kindredsec.com/2020/01/07/the-basics-of-packed-malware-manually-unpacking-upx-executables/

