RAIDP: ReplicAtion with Intra-Disk Parity

Eitan Rosenfeld, Aviad Zuck, Nadav Amit, Michael Factor, Dan Tsafrir

Today's Datacenters

Image Source: http://www.google.com/about/datacenters/gallery/#/tech/14e 2 of 41

Problem: Disks fail

- So storage systems use redundancy when storing data
- Two forms of redundancy:
 - Replication, or
 - Erasure codes

Slide 4 of 41

Replication

Slide 9 of 41

Many modern systems replicate warm data

- Amazon's storage services
- Google File System (GFS)
- Facebook's Haystack
- Windows Azure Storage (WAS)
- Microsoft's Flat Datacenter Storage (FDS)
- HDFS (open-source file-system for Hadoop)
- Cassandra

DynamoDB Google

Why is replication advantageous for warm data?

Better for **reads**:

- 1. Load balancing \checkmark
- 2. Parallelism \checkmark
- 3. Avoids degraded reads \checkmark

Better for **writes**:

4. Lower sync latency √

Better for reads and writes:

- 5. Increased sequentiality \checkmark
- 6. Avoids the CPU processing used for encoding \checkmark
- 7. Lower repair traffic \checkmark

Recovery in replication based systems is efficient

Recovery in replication based systems is efficient

Recovery in replication based systems is efficient

Facebook "estimate[s] that if 50% of the cluster was Reed-Solomon encoded, the repair network traffic would completely saturate the cluster network links"

Modern replicating systems triple-replicate warm data

- Amazon's DynamoDB
- Facebook's Haystack
- Google File System (GFS)
- Windows Azure Storage (WAS)
- Microsoft's Flat Datacenter Storage (FDS)
- HDFS (open-source file-system for Hadoop)
- Cassandra

DvnamoDB Azure

Bottom Line

- **Replication** is used for **warm data** only
 - It's expensive! (Wastes storage, energy, network)
- **Erasure coding** used for the rest (cold data)

Our goal: Quickly recover from two simultaneous disk failures *without resorting to a third replica* for warm data

RAIDP - ReplicAtion with Intra-Disk Parity

- Hybrid storage system for warm data with only two* copies of each data object.
- Recovers quickly from a simultaneous failure of any two disks
- Largely enjoys the aforementioned 7 advantages of replication

Each of the N disks is divided into N-1 *superchunks* – e.g. 4GB each

- Each of the N disks is divided into N-1 *superchunks* e.g. 4GB each
- 1-Mirroring: Superchunks must be 2-replicated

- Each of the N disks is divided into N-1 *superchunks* e.g. 4GB each
- **1-Mirroring**: Superchunks must be 2-replicated
- 1-Sharing: Any two disks share at most one superchunk

Introducing "disk add-ons"

- Associated with a specific disk
 - Interposes all I/O to disk
 - Stores an erasure code of the local disk's superchunks
 - Fails separately from the associated disk

RAIDP Recovery

XOR Add-on 1 with the surviving superchunks from Disk 1.

Slide 30 of 41

warm data

repair traffic

Lstor Feasability

Goal: Replace a third replica disk with 2 Lstors Lstors need to be cheap, fast, and fail separately from disk.

- **Storage:** Enough to maintain parity (~\$9) [1]
- Processing: Microcontroller for local machine independence (~\$5) [2]
- Power: Several hundred Amps for 2–3 min from small supercapacitor to read data from the Lstor

Commodity 2.5" 4TB disk for storing an additional replica costs \$100: 66% more than a conservative estimate of the cost of two Lstors

Implementation in HDFS

- RAIDP implemented in in Hadoop 1.0.4
 - Two variants:
 - Append-only
 - Updates-in-place
- 3K LOC extension to HDFS
 - Pre-allocated block files to simulate superchunks
 - Lstors simulated in memory
 - Added crash consistency and several optimizations

Evaluation

- RAIDP vs. HDFS with 2 and 3 replicas
- Tested on a 16-node cluster
 - Intel Xeon CPU E3-1220 V2 @ 3.10GHz
 - 16GB RAM
 - 7200 RPM disks
- 10Gbps Ethernet
- 6GB superchunks, ~800GB cluster capacity

Hadoop write throughput (Runtime of writing 100GB)

Hadoop read throughput (Runtime of reading 100GB)

Write Runtime vs. Network Usage

TeraSort Runtime vs. Network Usage

Recovery time in RAIDP

<u>System</u>	<u>1Gbps Network</u>	<u>10Gbps Network</u>
RAIDP	827 s	125 s
RAID-6	12,300 s	1,823 s

16 node cluster with 6GB superchunk

RAIDP recovers 14x faster!

For erasure coding, such a recovery is required for **every** disk failure. For RAIDP, such a recovery is only required after the 2nd failure.

Vision and Future work

- Survives two simultaneous failures with only two replicas
- Can be augmented to withstand more than two simultaneous failures
 - "Stacked" LSTORs
- Building Lstors instead of simulating them
- Equipping Lstors with network interfaces so that they can withstand rack failures
- Experiment with SSDs

Summary

- RAIDP achieves similar failure tolerance as 3-way replicated systems
 - Better performance when writing new data
 - Small performance hit during updates
- Yet:
 - Requires 33% less storage
 - Uses considerably less network bandwidth for writes
 - Recovery is much more efficient than EC
- Opens the way for storage vendors and cloud providers to use 2 (instead of 3, or more) replicas

 Potential savings in size, energy, and capacity