
Technische Universität Berlin

Design of a
Symbolically Executable
Embedded Hypervisor

Jan Nordholz <j.nordholz@tu-berlin.de>

15th EUROSYS, 27-30 April, 2020

PHIDIAS – Type I Embedded Hypervisor

2

• Design paradigm: fully embrace static use cases – no compromises
• No creation/destruction of VMs

• No scheduling

• No memory allocation/reclamation

• No IRQ registration, rerouting, …

• No migration of VCPUs across physical cores
→ hypervisor executes independently on each core

• No dynamic creation of inter-VM communication channels

• Use case examples:
• Control units in automotive IT

• Measuring instruments subject to metrological certification

Offline Configuration Toolkit

3

• Necessary functionality moved into offline configuration toolkit:
• Reads in system configuration (XML)

• Target architecture and SoC

• Number of VMs, memory requirements, desired IPC channels, IRQ pass-throughs…

• Drives compilation of hypervisor
• Selects subset of compiled modules

• Guesses / probes for cross-compiler

• Assigns physical memory resources, allocates virtual address ranges

• Generates all page tables (stage-1 per HV instance, stage-2 per VM)

• Builds schedule

• Emits tree of C structs describing desired system objects
• VCPUs, scheduler configuration, IRQ handler table, …

→ compiled and (loosely) linked to hypervisor image

• Wraps final hypervisor image into necessary boot clothing (e.g., uimage)

Remaining Hypervisor Runtime Functionality

5

• What modules are still there at runtime?
• Scheduler? No. VM Dispatcher (context switch / state save+restore)? Yes.

• MM Subsystem? No, only setting of nested paging controls.

• IRQ Handling? Yes, using a fixed dispatch table.

• Device Drivers? Yes, bare minimum (IRQ controller, timer, CPU virt. ext.).

• Device Emulation? Partially:
• Devices tied into HW virtualization: yes (usually IRQ controller and timer).

• Other devices? No, but PHIDIAS supports reflection of nested faults into another VM.

• Inter-VCPU Communication? Yes:
• Among VCPUs of a single VM: through virtual IRQ controller (virtual IPI emulation).

• Across VMs: “virtual IRQ” capability allows one VM to trigger another.

• Trap / Fault Handler? Yes:
• Architectural traps, faults on emulated MMIO ranges: yes.

• Hypercalls: only for triggering vIRQs and for reflection management.

Symbolic Execution Framework

6

• Implication of our design: all system objects are known a priori
• Number (and memory location) of VMs, vIRQ lines etc. fixed at compile time

→ very limited state space of hypervisor

• (Recap) Common OS proof approach: abstraction and refinement
• (usually) source code  abstract specification

• Allows reasoning to capture abstract properties such as “correctness”

• Very labor-intensive (e.g. interactive theorem proving)

• Result is generic (does not depend on concrete instantiation)

Symbolic Execution Framework

7

• Implication of our design: all system objects are known a priori
• Number (and memory location) of VMs, vIRQ lines etc. fixed at compile time

→ very limited state space of hypervisor

• Unique proof approach for PHIDIAS: directly analyze machine code
→ symbolic execution
• Machine code  intermediate invariants:

• No deadlocks

• Suspending/resuming VCPUs is performed correctly

• Data structures of hypervisor are kept sane

• Checking for “correctness” property would require abstract specification

• Automated (“push-button”) analysis

• Result is bound to a specific instance (i.e. compiled image)

Symbolic Execution Framework

8

• Symbolic Execution: commonly used to analyze userspace binaries
• ISA support usually only covers unprivileged subset

• Adoption of established framework would require adaptation:
• Addition of privileged instructions

• Addition of privileged resources (e.g., control registers)

• Special handling of privileged operations
• Many of those would require aborting the current execution trace:

• Changing core system controls (paging on/off, cache on/off, access bits on/off, …)

• Modification of the current address space

• Alternative: custom solution, purpose-built for executing our HV
• Drawback: recognizes minimal set of instructions; ARMv8 only

Current State of Development

9

• Supported Architectures: ARMv8-A, ARMv7-A, MIPS (VZ), x86_64

• Supported SoCs: RK3399, HiKey 2, RPi 3, RPi 2, Cubieboard, Qemu virt

• Proof Engine: ARMv8 only

• Push-Button Verification Times: scales with #VCPUs, <8 VCPUs → <2h

• Overall Implementation Effort
• ≈11 kLOC HV (C + Assembler), ≈4.5 kLOC used per instantiation

• ≈6 kLOC configuration toolkit (C)

• ≈7.5 kLOC proof engine (C), using Z3 as SMT backend

Current State of Development

10

• Being worked on:
• RISC-V support (HiFive1 rev B)

• Transition from self-written to a mature symbolic execution framework

• Extension of prover results towards abstract properties

• Release as open source project

• Aspects worth investigating:
• Analyze / optimize cache and TLB footprint of HV code paths

• Tune / rewrite bootable HV image to reduce footprint

• Measure / improve worst-case latency of hot paths (IRQ delivery, frequent traps)

• Try reintroducing dynamic aspects under our umbrella of „pure staticness“
• HV-based big.LITTLE core switching

• Pseudo-Ballooning by switching between multiple pregenerated sets of page tables

• Shadow paging

Thank you for watching!

11

