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PHIDIAS – Type I Embedded Hypervisor 
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• Design paradigm: fully embrace static use cases – no compromises 
• No creation/destruction of VMs 

• No scheduling 

• No memory allocation/reclamation 

• No IRQ registration, rerouting, … 

• No migration of VCPUs across physical cores 
→ hypervisor executes independently on each core 

• No dynamic creation of inter-VM communication channels 

 

• Use case examples: 
• Control units  in automotive IT 

• Measuring instruments subject to metrological certification 



Offline Configuration Toolkit 
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• Necessary functionality moved into offline configuration toolkit: 
• Reads in system configuration (XML) 

• Target architecture and SoC 

• Number of VMs, memory requirements, desired IPC channels, IRQ pass-throughs… 

• Drives compilation of hypervisor 
• Selects subset of compiled modules 

• Guesses / probes for cross-compiler 

• Assigns physical memory resources, allocates virtual address ranges 

• Generates all page tables (stage-1 per HV instance, stage-2 per VM) 

• Builds schedule 

• Emits tree of C structs describing desired system objects 
• VCPUs, scheduler configuration, IRQ handler table, … 

→ compiled and (loosely) linked to hypervisor image 

• Wraps final hypervisor image into necessary boot clothing (e.g., uimage) 



Remaining Hypervisor Runtime Functionality 
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• What modules are still there at runtime? 
• Scheduler? No. VM Dispatcher (context switch / state save+restore)? Yes. 

• MM Subsystem? No, only setting of nested paging controls. 

• IRQ Handling? Yes, using a fixed dispatch table. 

• Device Drivers? Yes, bare minimum (IRQ controller, timer, CPU virt. ext.). 

• Device Emulation? Partially: 
• Devices tied into HW virtualization: yes (usually IRQ controller and timer). 

• Other devices? No, but PHIDIAS supports reflection of nested faults into another VM. 

• Inter-VCPU Communication? Yes: 
• Among VCPUs of a single VM: through virtual IRQ controller (virtual IPI emulation). 

• Across VMs: “virtual IRQ” capability allows one VM to trigger another. 

• Trap / Fault Handler? Yes: 
• Architectural traps, faults on emulated MMIO ranges: yes. 

• Hypercalls: only for triggering vIRQs and for reflection management. 



Symbolic Execution Framework 
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• Implication of our design: all system objects are known a priori 
• Number (and memory location) of VMs, vIRQ lines etc. fixed at compile time 

→ very limited state space of hypervisor 

 

• (Recap) Common OS proof approach: abstraction and refinement 
• (usually) source code  abstract specification 

• Allows reasoning to capture abstract properties such as “correctness” 

• Very labor-intensive (e.g. interactive theorem proving) 

• Result is generic (does not depend on concrete instantiation) 

 



Symbolic Execution Framework 
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• Implication of our design: all system objects are known a priori 
• Number (and memory location) of VMs, vIRQ lines etc. fixed at compile time 

→ very limited state space of hypervisor 

 

• Unique proof approach for PHIDIAS: directly analyze machine code 
→ symbolic execution 
• Machine code  intermediate invariants: 

• No deadlocks 

• Suspending/resuming VCPUs is performed correctly 

• Data structures of hypervisor are kept sane 

• Checking for “correctness” property would require abstract specification 

• Automated (“push-button”) analysis  

• Result is bound to a specific instance (i.e. compiled image) 

 



Symbolic Execution Framework 
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• Symbolic Execution: commonly used to analyze userspace binaries 
• ISA support usually only covers unprivileged subset 

 

• Adoption of established framework would require adaptation: 
• Addition of privileged instructions 

• Addition of privileged resources (e.g., control registers) 

• Special handling of privileged operations 
• Many of those would require aborting the current execution trace: 

• Changing core system controls (paging on/off, cache on/off, access bits on/off, …) 

• Modification of the current address space 

 

• Alternative: custom solution, purpose-built for executing our HV 
• Drawback: recognizes minimal set of instructions; ARMv8 only 



Current State of Development 
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• Supported Architectures: ARMv8-A, ARMv7-A, MIPS (VZ), x86_64 

• Supported SoCs: RK3399, HiKey 2, RPi 3, RPi 2, Cubieboard, Qemu virt 

• Proof Engine: ARMv8 only 

• Push-Button Verification Times: scales with #VCPUs, <8 VCPUs → <2h 

 

 

•  Overall Implementation Effort 
• ≈11 kLOC HV (C + Assembler), ≈4.5 kLOC used per instantiation 

• ≈6 kLOC configuration toolkit (C) 

• ≈7.5 kLOC proof engine (C), using Z3 as SMT backend 

 



Current State of Development 
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• Being worked on: 
• RISC-V support (HiFive1 rev B) 

• Transition from self-written to a mature symbolic execution framework 

• Extension of prover results towards abstract properties 

• Release as open source project 

 

• Aspects worth investigating: 
• Analyze / optimize cache and TLB footprint of HV code paths 

• Tune / rewrite bootable HV image to reduce footprint 

• Measure / improve worst-case latency of hot paths (IRQ delivery, frequent traps) 

• Try reintroducing dynamic aspects under our umbrella of „pure staticness“ 
• HV-based big.LITTLE core switching 

• Pseudo-Ballooning by switching between multiple pregenerated sets of page tables 

• Shadow paging 



Thank you for watching! 
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