
Provable Multicore Schedulers 
with Ipanema: Application to 
Work-Conservation

Baptiste Lepers
Redha Gouicem
Damien Carver
Jean-Pierre Lozi
Nicolas Palix
Virginia Aponte
Willy Zwaenepoel
Julien Sopena
Julia Lawall
Gilles Muller



2/32

Work conservation

“No core should be left idle when a core is overloaded”

Core 0 Core 1 Core 2 Core 3

Non work-conserving situation: core 0 is overloaded, other cores are idle



3/32

Problem

Linux (CFS) suffers from work conservation issues

Core is mostly idle

C
o
re Core is mostly overloaded

[Lozi et al. 2016]

0

8

16

24

32

40

48

56

Time (second)



4/32

Problem

FreeBSD (ULE) suffers from work conservation issues

Core is idle

C
o
re

Core is overloaded

[Bouron et al. 2018]

Time (second)



5/32

Problem

Work conservation bugs are hard to detect

No crash, no deadlock. No obvious symptom.

137x slowdown on HPC applications
23% slowdown on a database.

[Lozi et al. 2016]



6/32

This talk
Formally prove work-conservation



7/32

Work Conservation Formally

(∃c . O(c)) ⇒ (∀c′ . ¬I(c′))

If a core is overloaded, no core is idle

Core 0 Core 1



8/32

Work Conservation Formally

(∃c . O(c)) ⇒ (∀c′ . ¬I(c′))

If a core is overloaded, no core is idle

Core 0 Core 1

Does not work for realistic schedulers!



9/32

Challenge #1

Concurrent events & optimistic concurrency



10/32

Challenge #1

Concurrent events & optimistic concurrency

Observe (state of every core)

Lock (one core – less overhead)

Act (e.g., steal threads from locked core)

Based on possibly outdated observations!

ti
m

e



11/32

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

Runs load
balancing



12/32

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

Observes load
(no lock)



13/32

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

Locks busiest

Ideal
scenario: no
change since
observations



14/32

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

Locks “busiest”
Busiest might have no thread left! (Concurrent blocks/terminations.)

Possible scenario:



15/32

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

(Fail to)
Steal from busiest



16/32

Challenge #1

Concurrent events & optimistic concurrency

Definition of Work Conservation must take 
concurrency into account!

Observe

Lock

Act
Based on possibly outdated observations!

ti
m

e



17/32

Concurrent Work Conservation Formally

If a core is overloaded
(but not because a thread was concurrently created)

∃c . (O(c) ∧ ¬fork(c) ∧ ¬unblock(c) …)

Definition of overloaded with « failure cases »:



18/32

Concurrent Work Conservation Formally

∃c . (O(c) ∧ ¬fork(c) ∧ ¬unblock(c) …)
⇒

∀c′ . ¬(I(c′) ∧ …)



19/32

Challenge #2

Existing scheduler code is hard to prove

Schedulers handle millions of events per second
Historically: low level C code.



20/32

Challenge #2

Existing scheduler code is hard to prove

Schedulers handle millions of events per second
Historically: low level C code.

Code should be easy to prove AND efficient!



21/32

Challenge #2

Existing scheduler code is hard to prove

Schedulers handle millions of events per second
Historically: low level C code.

Code should be easy to prove AND efficient!
⇒

Domain Specific Language (DSL)



22/32

DSL advantages

Trade expressiveness for expertise/knowledge:

Robustness: (static) verification of properties

Explicit concurrency: explicit shared variables

Performance: efficient compilation



23/32

DSL-based proofs

DSL Policy

WhyML code

C code

Proof

Kernel module

DSL: close to C
Easy learn and to compile to WhyML and C



24/32

DSL-based proofs

Proof on all possible 
interleavings



25/32

DSL-based proofs

load balancing

Core 0

load balancingti
m

e

Proof on all possible 
interleavings

Split code in blocks
(1 block = 1 read or write to a 

shared variable)



26/32

DSL-based proofs

fork

Core 1 … Core N

terminate

fork

fork

Proof on all possible 
interleavings

Split code in blocks
(1 block = 1 read or write to a 

shared variable)

Simulate execution of concurrent 
blocs on N cores

Concurrent WC must hold at the
end of the load balancing

load balancing

Core 0

load balancingti
m

e



27/32

DSL-based proofs

fork

Core 1 … Core N

terminate

fork

fork

Proof on all possible 
interleavings

Split code in blocs
(1 bloc = 1 read or write to a 

shared variable)

Simulate execution of concurrent 
blocs on N cores

Concurrent WC must always hold!

load balancing

Core 0

load balancingti
m

eDSL ➔ few shared variables ➔ tractable 



28/32

Evaluation

CFS-CWC (365 LOC)
Hierarchical CFS-like scheduler

CFS-CWC-FLAT (222 LOC)
Single level CFS-like scheduler

ULE-CWC (244 LOC)
BSD-like scheduler



29/32

Less idle time
FT.C (NAS benchmark)



30/32

Comparable or better performance

NAS benchmarks (lower is better)



31/32

Comparable or better performance

Sysbench on MySQL (higher is better)



32/32

Conclusion

Work conservation: not straighforward!
… new formalism: concurrent work conservation!

Complex concurrency scheme
…proofs made tractable using a DSL.

Performance: similar or better than CFS.


