state-machine replication for planet-scale systems Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, Pierre Sutra

29 Apr. 2020 @ EuroSys'20

why replicate?

why replicate?

- fault-tolerance

why planet-wide?

- minimizes latency

why replicate?

- fault-tolerance

why planet-wide?

- minimizes latency

why replicate?

- fault-tolerance

why planet-wide?

- minimizes latency

why replicate?

- fault-tolerance

why planet-wide?

- minimizes latency

how consistent?

- linearizable (as single-copy)

state-machine replication

for planet-scale systems

why replicate?

- fault-tolerance

why planet-wide?

- minimizes latency

how consistent?

- linearizable (as single-copy)

how?

- state-machine replication (SMR)

small (nearby) quorums

leaderless

single round-trip

small quorum

(flexible) paxos

epaxos

IS	leaderless	single round-trip

small quorums

(flexible) paxos

epaxos

3-month link-monitoring experiment observation: concurrent link slowdowns are rare! (high values for f are unnecessary)

3-month link-monitoring experiment observation: concurrent link slowdowns are rare! (high values for f are unnecessary)

every conflict was reported by at least f processes

every conflict was reported by at least f processes

fast path

commit(b, {a})

every conflict was reported by at least f processes

commit(a, { }) commit(b, {a, c}) commit(c, {a, b})

commit(a, { }) commit(b, {a, c}) commit(c, {a, b})

commit(a, { }) commit(b, {a, c}) commit(c, {a, b})

commit(a, { }) commit(b, {a, c}) commit(c, {a, b})

atency penalty

atency penalty

more in the paper

- significantly simpler recovery than previous protocols
- two optimizations that speed up execution
- evaluation
 - fast-path likelihood
 - availability under failures
 - YCSB
- proof of correctness (arXiv)

- atlas exploits the fact that, in DC failures are rare
 - first leaderless SMR protocol that allows configuring n independently of f
 - small quorums (for small values of f)
 - flexible fast-path condition allows a high percentage of commands to be processed in a single round trip

summary

atlas exploits the fact that, in planet-scale systems, concurrent

state-machine replication for planet-scale systems Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, Pierre Sutra

V @vitorenesduarte

29 Apr. 2020 @ EuroSys'20