EuroSys 2020

Delegation Sketch: a Parallel Design with Support for Fast and Accurate Concurrent Operations

Charalampos Stylianopoulos, Ivan Walulya, Magnus Almgren, Olaf Landsiedel and Marina Papatriantafilou

Chalmers University of Technology, Sweden

Distributed Computing and Systems

Motivation

Example:

At any point in time, report how many packets from a given IP have been seen

- o Exact answer ⇒ space proportional to number of unique IPs
- o Approximate answer → constant space
 - Enough to summarize the input stream
 - Sketches are established tools for that

Challenges

- o We focus on how to parallelize sketches
- o Parallelization is necessary:
 - High-speed networks ⇒ Mops/sec on the sketch
 - Many-core platforms ⇒ underutilized in sketches
- o 4-way tradeoff:
 - Applications require fast insertions and queries
 - E.g. intrusion detection, traffic scheduling
 - Most parallel approaches focus on one of the two (with the exception of recent work[1])

Our Work

Delegation Sketch: A parallelization design for sketches Contributions:

- Concurrent Insertions and queries, at high rates
- Maintains high accuracy and low memory consumption
- Scales better than state-of-the art on hundreds of cores

Delegation Sketch: Domain splitting

- Every key in the input domain is assigned an "owner" sketch and inserted there
- o Queries are fast and accurate:
 - every key is in a specific sketch

6

Delegation Sketch: Delegation and Combining

- o Threads aggregate multiple keys into filters locally, without communication
- o Filters are the units of synchronization
- o Full filters are delegated to the "owner" sketch

Delegation Sketch

Evaluation

Evaluation Results

Parameters: # threads & query rate

Delegation Sketch:

- o 2-4X higher relative speedup at higher query rates
- o Better scaling at higher query rates

Delegation Sketch

Evaluation

Evaluation Results

8

Delegation Sketch

- o A parallelization scheme for high-rate traffic summarization
- Supports both insertions and queries
- o Up to 2-4X higher throughput than next fastest baseline
- As accurate as the most accurate baseline

Backup slides

Parameter: input skew

Delegation Sketch

Evaluation

Evaluation Results

* 2000 Augmented Sketch Throuhput (Mops/sec) 3000 1000 1000 Throuhput (Mops/sec) 000 002 Delegation Sketch Single-shared Thread-local 0 0 0 1 2 3 Δ 0 1 2 3 4 Skew parameter Skew parameter 0.1% queries 0.0% gueries **Delegation Sketch:** *Note: different y-axis range

• High throughput at medium-high skew, due to filters

Delegation Sketch

Evaluation

Evaluation Results

Query Latency

Evaluation

Accuracy

Accuracy bounds for Delegation Sketch:

 $f(i) \leq \hat{f}(i) \leq f(i) + \epsilon N'$ with probability $1 - \delta$

f(i): the true frequency of key i $\hat{f}(i)$: the reported estimate for key i $\epsilon = e/w$ (w = number of buckets) N' = number of keys that hash to the same sketch $\delta = e^{-d}$, d = number of rows

Background Delegation Sketch Evaluation

Accuracy

