
Persistent Memory and the Rise
of Universal Constructions

Eurosys 2020

Andreia Correia – University of Neuchâtel

Pascal Felber – University of Neuchâtel

Pedro Ramalhete – Cisco Systems

Persistent Memory

Persistent Memory (or Non-Volatile Main Memory) is a durable media that can be accessed
through load and store instructions.

Physically, it fits into a DIMM slot

Solutions exist for several years by HPE, Micron and Viking, but all these are battery backed:

https://www.vikingtechnology.com/products/nvdimm/

https://www.hpe.com/nl/en/servers/persistent-memory.html

https://www.micron.com/campaigns/persistent-memory

A year ago, Intel released the Optane DC Persistent Memory which does not require a battery.
Capacities go up to 512 GiB per module, and 3 TB per CPU socket.

https://arxiv.org/pdf/1903.05714.pdf

https://www.vikingtechnology.com/products/nvdimm/
https://www.hpe.com/nl/en/servers/persistent-memory.html
https://www.micron.com/campaigns/persistent-memory
https://arxiv.org/pdf/1903.05714.pdf

Persistent data structures

Some of the reasons that make persistent data structures a difficult topic, are:

• Where to place the flushes (CLWBs) and fences (SFENCE)

• How to write a correct recovery procedure

• How to allocate and de-allocate persistent objects efficiently, without leaking

• How to modify existing persistent data structures to suit novel business needs

How to make a concurrent and persistent data structure

Use a technique that
transforms existing

Lock-Free
data structures

Use a PTM that
transforms Sequential

data structures

pwb/pfence/psync recipe
Izraelevitz et al, DISC 2018

Capsules
Blelloch et al, SPAA 2018

NVTraverse
Ben-David et al, PLDI 2020

Make a data structure
by hand

Locks + cow/undo/redo log
Many different papers

Lock-free persistent queue
Friedman et al, PPoPP 2018

Mnemosyne
Volos et al, ASPLOS 2016

libpmemobj (PMDK)
Intel

OneFile
Ramalhete et al, DSN 2019

Complex to design and modify
Blocking

Lock-Free Difficult to make other ADTs

Lock-Free
Easy to deploy

Slow

Lock-Free
Fast for reads

Difficult to deploy

Lock-Free

Scales for writes
Easy to deploy

Unstable
Blocking

Difficult to deploy

Easy to deploy
No concurrency
Slow

Wait-Free
Easy to deploy

Writes don’t scale

How to make a concurrent and persistent data structure

Use a technique that
transforms existing

Lock-Free
data structures

Use a PTM that
transforms Sequential

data structures

Make a data structure
by hand

1. Precede every
CAS with a flush

2. Flush and fence
after every load

3. …

PTM

Sequential DS

Lock-Free DS

Concurrent and
Persistent DS

Redo-PTM

announce[]

0 1 1toggle[]

Ring Queue

Combined
rwlock
CL log
head

curComb pointer

Replica

Combined
rwlock
CL log
head

Replica

Combined
rwlock
CL log
head

Replica

Combined
rwlock
CL log
head

Replica

Pe
rs

is
te

n
t

M
em

o
ry

states[][]

struct State {
SeqTidIdx ticket;
bool applied[t];
uint64_t results[t];
RedoLog wlog;

}

T0|0

T0|1

T0|2

T0|3

T1|0

T1|1

T1|2

T2|0

Announce mutation

_curC = curComb
Populate_newST.head

Help append _curC.head
to Ring Queue

Acquire write-lock on _c

Apply redo-log

Simulate all announced
mutations on _c

Downgrade to read-lock

Flush all Cache Lines

Apply
undo

CAS

Append _c.head to Ring

Return
result

yes

2nd

no
1st

no

Redo-PTM T1 T2

remove(a) add(b)
if (add(a))
remove(c);

announce[]

std::functions

0 1 1toggle[] 1 0 0

write transaction

Ring Queue

Combined
rwlock
CL log
head

curComb pointer

Replica

Combined
rwlock
CL log
head

Replica

Combined
rwlock
CL log
head

Replica

Combined
rwlock
CL log
head

Replica

Pe
rs

is
te

n
t

M
em

o
ry

states[][]

struct State {
SeqTidIdx ticket;
bool applied[t];
uint64_t results[t];
RedoLog wlog;

}

T0|0

T0|1

T0|2

T0|3

T1|0

T1|1

T1|2

T2|0

remove(a);
add(b);
if (add(a))
remove(c);

Redo
log

T0

Wait-Free PTM
Comparison table

OneFile PTM CX PTM Redo PTM

Maximum number of instances in use 1 2 t t + 1

Wait-Free Consensus Herlihy’s Combining
consensus (DCAS variant)

Turn Consensus
(in Turn Queue)

Herlihy’s Combining
Consensus (Ring Queue)

Access DCAS Shared multi-instances +
strong tryrwlock

Shared multi-instances +
strong tryrwlock

Memory Reclamation Scheme Hazard Eras HP + ref count Hazard Pointers

Non-abortable reads no yes yes

Logging Persistent Physical Log Volatile Logical Log Volatile Physical Log

8t = total number of threads in the system

What makes Redo-PTM fast

1. Volatile physical logging

2. Store aggregation

3. Flush aggregation

4. Flush deferral

5. Replica copies with non-temporal stores

What makes Redo-PTM fast
1. Volatile Physical Logging

In Redo-PTM, the curComb variable and the
instances (replicas) associated with each Combined,
are located in persistent memory.

All other components are in volatile memory
(DRAM) which is much faster than PM:

• Ring Queue and combining consensus

• Physical log of modifications (and intrusive
hashmap)

• Combined instances: Log of modified cache lines,
reader-writer lock, root pointer, head pointer
(which points to an entry in the Ring Queue).

Ring Queue

phy
log

phy
log

phy
log

phy
log

phy
log

phy
log

phy
log

Combined
rwlock
CL log

Combined
rwlock
CL log

Combined
rwlock
CL log

…

curComb pointer

Replica Replica Replica…

V
o

la
ti

le
 m

em
o

ry
 (

D
R

A
M

)
Pe

rs
is

te
n

t
M

em
o

ry

What makes Redo-PTM fast
2. Store aggregation

Classic redo-log PTMs (like Mnemosyne) transform the
transaction from each thread into a physical redo log.

In Redo-PTM, we use the combining consensus to
aggregate the operations from multiple in-flight
threads, into a single redo/undo log.

With a large number of threads, the likelihood
increases that many operations will touch the same
addresses.

Each address is written into, a single time, reducing
write amplification.

Also, in classic redo-log the log is persistent. In Redo-
PTM the redo-log is volatile.

T0 T1 T2 T3

remove(b) add(c) remove(c) add(a)

user’s
transaction

Combining
consensus

remove(b);
add(c);
remove(c);
add(a);

PTM

0x1111
0x2222
0x3333
0x4444
0x5555

redo/undo log

0x1111
0x3333
0x5555

0x2222
0x3333
0x4444

0x1111
0x3333
0x4444

0x2222
0x4444
0x5555

What makes Redo-PTM fast
3. Flush aggregation

Classic redo-log PTMs (like Mnemosyne and OneFile) flush
the persistent redo log, and later flush each modified
cache line in memory.

In Redo-PTM, the combining consensus aggregates the
operations from multiple in-flight threads, and the Redo
PTM creates a volatile redo log and a volatile cache line
log.

With a large number of threads, the likelihood that many
operations will touch the same cache lines is higher.

This is particularly true for allocator metadata
modifications.

Each cache line is flushed a single time, improving
performance.

T0 T1 T2 T3

remove(b) add(c) remove(c) add(a)

user’s
transaction

Combining
consensus

remove(b);
add(c);
remove(c);
add(a);

PTM

0x1000
0x2000
0x3000
0x4000
0x5000

Cache
Line log

0x1001
0x2001
0x5001

0x2002
0x3002
0x4002

0x1003
0x3003
0x4003

0x2004
0x4004
0x5004

What makes Redo-PTM fast
4. Flush deferral

In Redo-PTM, a thread executes modifications on its own
private instance and only issues the flushes immediately
before attempting to change curComb with a CAS.

If another thread has in the meantime changed curComb,
then no flushes are issued. The Cache Line log remains
associated with a replica, for another thread to later
aggregate further modifications.

This technique allows Redo-PTM to aggregate flushes
across consecutive transactions.

If the Cache Line log grows beyond 1/10 of the number of
cache lines in the replica, we clear the log and set a flag to
flush the entire replica (before becoming the next
curComb).

T0 T1 T2 T3

remove(b) add(c) remove(c) add(a)

Combining
consensus

remove(b);
add(c);
remove(c);
add(a);

0x1000
0x2000
0x3000
0x4000
0x5000

Cache
Line log

Ring Queue

remove(x) add(y) remove(z) add(x)

remove(x);
add(y);
remove(z);
add(x);

remove(c) add(c) remove(e) add(a)

remove(c);
add(c);
remove(e);
add(a);

0x1001
0x2001

0x2002
0x3002
0x4002

0x1003
0x4003
0x5003

Physical Redo Logs

What makes Redo-PTM fast

5. Replica copy with non-temporal stores

In Redo-PTM, when a full copy of the replica needs to be
made, instead of doing a memcpy() and then flushing the
entire range, we use non-temporal stores to execute the
copy and forego the need to issue CLWB instructions.

This approach provides and extra improvement in
performance for such (rare) large copies. curComb pointer

Replica Replica
Stale

Replica
… Replica

movntq
movntq
movntq
movntq

Sequential Linked List Queue transformed
into a Wait-Free Persistent Queue

Even though Redo-PTM
serializes write
transactions, it is able to
scale for writes in certain
situations, due to the
previously mentioned
optimizations.

FHMP: Friedman et al, PPoPP 2018
NormOpt: Ben-David et al, SPAA 2019

Tree set and
hash set

Top plots show a transactional
Red-Black Tree with three
different PTMs. For 100%, 10%
and 1% updates.

Bottom plots show a
transactional resizable hash set.

Sequential queue annotated
to be used with Redo-PTM
(wait-free and persistent)

Handmade queue
(lock-free and persistent)

How KV stores are made today…

Two-Phase Locking
(+ MVCC)

KV Store
(blocking)

Redo Log
Years of

development

Expert Developers in Concurrency,
Durability and DBs

Concurrent Indexing
Data Structure

How we made a KV store with Redo-PTM

Redo DBMonths of
development

Expert DB Developer

Sequential Indexing
Data Structure

PTM

Redo-PTM

• Wait-Free progress
• Null recovery
• Non-abortable reads
• ACID transactions

RedoDB - KV Store

Because of the non-
abortable reads, read-only
transactions scale
regardless of the
existence or not of
ongoing write transactions

DB with 10 million keys.

End

Thank you for watching

More links at the Eurosys 2020 program page:

https://www.eurosys2020.org/program/

https://dl.acm.org/doi/abs/10.1145/3342195.3387515

Source code available at:

https://github.com/pramalhe/RedoDB

https://www.eurosys2020.org/program/
https://dl.acm.org/doi/abs/10.1145/3342195.3387515
https://github.com/pramalhe/RedoDB

