
Scalable Range Locks for
Scalable Address Spaces

And Beyond
Alex Kogan Dave Dice Shady Issa

Oracle Labs U. Lisboa & INESC-ID

• Conceived in parallel filesystems

• Allow concurrent access to shared resources

• e.g.: writing to the same file

Range Locks

2

Range Locks

3
BOF

EOF

{

{

{
{

Linux kernel Scalability Bottleneck

4

Existing Range Locks

• Auxiliary red-black tree

• Ranges sorted by starting address

• Protected by spin-lock

• contention even for shared access

5

VMA 1

VMA 2 VMA 4

[16-21]

[5-20] [30-60]

0

01

Existing Range Locks

• Auxiliary red-black tree

• Ranges sorted by starting address

• Protected by spin-lock

• contention even for shared access

6

VMA 1

VMA 2 VMA 4

[16-21]

[5-20] [30-60]

0

01

Current RL
are not

scalable

Our Contributions

• New design for Range locks

• Lock-free in the common case

• Scales up to 144 threads

• Speculative approach for VM operations in the Linux kernel

• Range locks for skip lists

7

List-based Range Locks

• A range lock is acquired once a range is inserted into a list

• Sorted by their starting addresses

8

• A range lock is acquired once a range is inserted into a list

• Sorted by their starting addresses

List-based Range Locks

9

R
List Head [30-60]

[5–20] [16-21]

CAS CAS

List-based Range Locks

10

R
List Head [30-60][16-21]

[5–20]

• A range lock is acquired once a range is inserted into a list

• Sorted by their starting addresses

• A range lock is acquired once a range is inserted into a list

• Sorted by their starting addresses

List-based Range Locks

11

List Head
R

[20-25][1–10] [40-43]

[15–45] [30–35]

• A range lock is acquired once a range is inserted into a list

• Sorted by their starting addresses

List-based Range Locks

12

List Head
R

[20-25][1–10]

We only need an extra
validation step for

Read-Write semantics
[40-43]

[15–45] [30–35]

VM Management in the Kernel

13

Virtual
Address
Space

0x00000000

0xffffffffff

VM Management in the Kernel

14

Virtual
Address
Space

0x00000000

0xffffffffff

VMA 1
start:
length:
Access rights:
READ|WRITE

VMA 2
start:
length:
Access rights:
READ|WRITE

VMA 3
start:
length:
Access rights:
NONE

VM Management in the Kernel

15

Virtual
Address
Space

0x00000000

0xffffffffff

VMA 1
start:
length:
Access rights:
READ|WRITE

VMA 2
start:
length:
Access rights:
READ|WRITE

VMA 3
start:
length:
Access rights:
NONE

VMA 1

VMA 2 VMA 4

VMA 1

VMA 3 VMA 2

mm_rb

VM Management in the Kernel

16

Virtual
Address
Space

0x00000000

0xffffffffff

VMA
start: 1000
length: 5000
Access rights:
READ|WRITE

mprotect(1000, 100, READ|WRITE)

mprotect(3000, 100, NONE)

VM Management in the Kernel

17

Virtual
Address
Space

0x00000000

0xffffffffff

VMA
start: 1000
length: 5000
Access rights:
READ|WRITE

mprotect(1000, 100, READ|WRITE)

mprotect(3000, 100, NONE)
Protecting

ranges naively
can create
data races

VM_Operation(start, length, args..){

Acquire_mm_sem();

VMA = find_vma(start);

// operation logic

…

read_only operations

Decide if structural modification is required

…

Release_mm_sem();

}

Refined Ranges for VM

18

VM_Operation(start, length, args..){

Acquire_mm_sem();

VMA = find_vma(start);

// operation logic

…

read_only operations

Decide if structural modification is required

…

Release_mm_sem();

}

Refined Ranges for VM

19

VM_Operation(start, length, args..){

Acquire_mm_sem();

VMA = find_vma(start);

// operation logic

…

read_only operations

Decide if structural modification is required

…

Release_mm_sem();

}

Refined Ranges for VM

20

Traverses the
red-black tree

mm_rb

Refined Ranges for VM

VM_Operation(start, length, args..){

Acquire_mm_sem();

Acquire_RL_Read(start, start+length);

VMA = find_vma(start);

Release_RL();

// operation logic

…

read_only operations

Decide if structural modification is required

…

Release_mm_sem();

}

21

Protect with
range lock of
input range

Refined Ranges for VM
VM_Operation(start, length, args..){

Acquire_mm_sem();

Acquire_RL_Read(start, start+length);

VMA = find_vma(start);

Release_RL();

Acquire_RL_Write(VMA.start-x, VMA.end+x);

// operation logic

…

read_only operations

Decide if structural modification is required

…

Release_RL();

Release_mm_sem();

}

22

Protect with range
lock of VMA range+Δ

check if the
mm_rb changed

meanwhile

Refined Ranges for VM

23

Acquire full
range lock and

retry

VM_Operation(start, length, args..){

Acquire_mm_sem();

Acquire_RL_Read(start, start+length);

VMA = find_vma(start);

Release_RL();

Acquire_RL_Write(VMA.start-x, VMA.end)+x;

// operation logic

…

read_only operations

if structural modification is required{

 Release_RL();

 Acquire_RL_Write(0,263-1);

 retry();

}

…

Release_RL();

Release_mm_sem();

}

Evaluation
• Linux kernel 4.16.0-rc2

• 4 Intel Xeon E7-8895 v3 (144 threads)

• Metis benchmark (wrmem)

• Baselines:

• Stock

• Tree-based RL (with and w/out speculation)

• List-based RL (with and w/out speculation)

24

Evaluation

25

} 9x

Tree-based Range
Locks do not scale
beyond 32 threads

Evaluation

26

Collected using
lock_stats

 More in the paper…
• Evaluation:

• More workloads

• User-space applications

• Range Locks design

• Fast path, avoiding starvation, memory reclamation

• Range locks for skip lists

27

Conclusion

• Scalable linked list-based Range Locks

• New speculative approach for the Linux VM

• Using Range Locks for concurrent data structures

28

