Scalable Range Locks for
Scalable Address Spaces

And Beyond
Alex Kogan Dave Dice Shady Issa
Oracle Labs U. L-isboa & INESC-ID

ORACLE 2 Tnesc id
7

Range Locks

N\
& o

 Conceived in parallel filesystems

e Allow concurrent access to shared resources

e e.g.: writing to the same file ‘1

Range Locks

GE4] UDUA 1AU EOF

5898 ABA8 AS8B

ES8F8 F8F8 21E

Q000 OEC3 000

‘ C449 1 547
FOED 09C1 BD4

CBDC 824

OCBD 6FD

r‘ 6 BC4 F 37E

&0

W OO W O

i SR SN o + B W IR SN 3

'Y S O TR N I O R R N
o W W < = = W

~] W w
(A

w O

o
0
-

"] BOF

Linux kernel Scalability Bottleneck

How to get rid of mmap_sem

Please consider subscribing to LWN [RFC 0/4] Replace mmap_sem by el range IOCk

Subscriptions are the lifeblood of LWN.net. If you appreciate this conte
and would like to see more of it, your subscription will help to ensure t

LWN continues to thrive. Please visit this page to join up and keep LW Laurent Dufour Wed, 1 9 Apr 201 7 05 :1 9 :1 O -0700

the net.
By Jonathan Corbet The mmap_sem lock used in the memory-management subsystem has been a known scalability problem for
May 8, 2019 years, but it has proved difficult to ren

management track of the 2019 Linux

Lsemy = mmnovimeniecimn: [RFC PATCH 00/64] mm: towards parallel address space
operations

Davidlohr Bueso @ Sun, 04 Feb 2018 17:30:07 -0800

[PATCH v3 -tip 0/6] locking: Introduce range reader/writer
lock

Davidlohr Bueso @ Mon, 15 May 2017 02:08:54 -0700

Existing Range Locks

* Auxiliary red-black tree
 Ranges sorted by starting address

* Protected by spin-lock

e contention even for shared access

Existing Range Locks

Current RL

are not
o A¥ scalable

 RangesSorted by starting address

* Protected by spin-lock

e contention even for shared access

Our Contributions

 New design for Range locks
* Lock-free in the common case
e Scales up to 144 threads
e Speculative approach for VM operations in the Linux kernel

 Range locks for skip lists

List-based Range Locks

 Arange lock is acquired once a range is inserted into a list

e Sorted by their starting addresses

List-based Range Locks

 Arange lock is acquired once a range is inserted into a list

e Sorted by their starting addresses

CAS CAS

[5-20] [16-21]

List-based Range Locks

 Arange lock is acquired once a range is inserted into a list

e Sorted by their starting addresses

[5-20]

10

List-based Range Locks

 Arange lock is acquired once a range is inserted into a list

e Sorted by their starting addresses

List Head

11

List-based Range Locks

 Arange lock is acquired once a range is inserted into a list

» Sorted by their starting addresses We only need an extra

List Head [20-25]

validation step for
Read-Write semantics

12

VM Management in the Kernel

Oxffffffffff

Virtual
Address

0x00000000

VM Management in the Kernel

Oxffffffffff
VMA 1
start:
length:
Access rights:
READ | WRITE
VMA 2
start:
length: VMA 3
Access rights: start:
READ | WRITE length:
Access rights:
NONE
Virtual
Address
Space

0x00000000

14

VM Management in the Kernel

Oxffffffffff
VMA 1 mm rb
start:
length:
Access rights:
READ | WRITE
VMA 2
start:
length: VMA 3
Access rights: start:
READ | WRITE length:
Access rights:
NONE
Virtual
Address
Space

0x00000000

15

VM Management in the Kernel

Oxffffffffff

VMA

start: 1000

length: 5000
Access rights:
READ | WRITE

Virtual
Address
Space

0x00000000

16

VM Management in the Kernel

Oxffffffffff

_ VMA

start: 1000

length: 5000
A\ccess rights:
AD | WRETE

Protecting
ranges naively
can create Virtual
Address
data races

Space

0x00000000

17

Refined Ranges for VM

VM Operation(start, length, args..) {
Acquire mm sem() ;
VMA = find vma (start);

// operation logic

read only operations

Decide 1f structural modification 1s required

Release mm sem() ;

18

Refined Ranges for VM

VM Operation(start, length, args..) {

Acquire mm sem() ;
VMA = find_vma(start);

// operation logic

read only operations

Decide 1f structural modification 1s required

Release mm sem() ;

19

Refined Ranges for VM

VM Operation(start, length, args..) {
Traverses the Acquire mm_sem() ;

red-black tree VMA = find vma (start);
mm_rb // operation logic

read only operations

Decide 1f structural modification 1s required

Release mm sem();

20

Refined Ranges for VM

VM Operation(start, length, args..) {
Acguire—mm—semi) 5
Acquire RL Read(start, start+length);

VMA = find vma (start);
Release RL();

// operation logic

read only operations

Decide 1f structural modification 1s required

Release mm——sem{—+

21

Refined Ranges for VM

VM Operation(start, length, args..) {

Acquilire RL Read(start, start+length);
VMA = find vma (start);
Release RL();

Acquire RL Write (VMA.start-x, VMA.end+x);

// operation logic

Protect with range

lock of VMA range+A read only operations

Decide 1f structural modification 1s required

Release RL();
check if the Rereasemm_semO

mm rb changed }
meanwhile

22

Refined Ranges for VM

VM Operation(start, length, args..) {

Acquire RL Read(start, start+length);
VMA = find vma (start);

Release RL();

Acquire RL Write (VMA.start-x, VMA.end) +x;

// operation logic

read only operations

1f structural modification 1s required{

Acquire full Release RL();

Acquire RL Write (0,293-1);

range lock and
retry }

retry ()’

Release RL();
Relegse mm—sem{—+

23

Evaluation

Linux kernel 4.16.0-rc2

4 Intel Xeon E7-8895 v3 (144 threads)

Metis benchmark (wrmem)

Baselines:

o Stock

* Tree-based RL (with and w/out speculation)

e List-based RL (with and w/out speculation)

24

Evaluation

1000

+ stock
4 tree-full
e list-full

100 m —x¥— tree-refined
g — list-refined

AAA

-

=
©

Runtime (ms)

1 2 4 3 16 32 12 144

threads

25

Tree-based Range
Locks do not scale
beyond 32 threads

Evaluation

10000
9000
8000
7000
co0)0GO . g£&
5600 L B :
4000
3000
2000
1000

wWait time (us)

r—— N

stock tree-full tree-refined Llist-full list-refined

Threads (1,2,4,8,16,32,36,72,108,144)

Collected using

lock stats

20

More In

Evaluation;

 More workloads

 User-space applications

Range Locks design

* Fast path, avoiding starvation, memory reclamation

 Range locks for skip lists

the paper...

Scalable Range Locks for
Scalable Address Spaces and Beyond

Alex Kogan
Oracle Labs

Burlington, MA, USA Burlington,

alex ke Wdoracle.com dave dic

Abstract

¢ locks are a synchronization construe

signed to pro-

vide concurrent access to multiple threads {or processes) to

disjoint parts of a shared resource. Originally concerved in

the file system context, range locks are

ning increasing

interest in the Linux kernel community seeking to alleviate

bottlenecks in the virtual memory management subsystem
The existing implementation of range locks in the kernel
however, uses an internal spin lock to protect the underlying

tree structure that keeps track of acquired and requested
ranges. This spin lock becomes a point of contention on its
own when the range lock is frequently acquired. Furt
more, where and exactly how specific (refined) ranges

be locked remains an open g

fent, but related con-

In this paper, we make two indepen
tributions. First, we propose an alternative approach for

building r

ge locks based on linked lists. The lis

are easy

to maintain in a lock-less fashion, and in fact, our range
locks do «

ond, we
the mp

use any internal locks in the common case. Sec-

row how the range of the lock can be refined in

tect operation through a speculative mechanism

This refinement, in turn, allows concurrent execution of

mprotect operations on n:*n-uvurqu;mu' memory regions
al i

effectiveness in user-space

We '.u'.plcn'.(nl our new srithms and demonstrate their

and kernel-space, achieving up

to 9% speedup compared to the stock version of the Linux

kernel. Beyond the virtual memory mar rent subsystem

we discuss other applications of range locks in parallel

‘e show |

ware. As a concrele ex: ow range l¢

be used to facilitate the design of scalable concurrent data
structures, such as skip lists

Work was done while the author was an

of all o part
it

Penuission to make digital or |

sonal or cl:

STOOm use 15 d without fee pros

sade or distributed for profit or commercial advantage and that <o

this notice and the full citatson on the first page Coy s for com

Abstractang with

Is work owny others than ACM must be ho

credit ks per Lo post on servets of to

redistribu n and/or a fee. Request

ms from permissions

EureSys ‘20, Apnl 27 2020, Heraklion, Greece

2020 Associatior

Dave Dice
Oracle Labs

Shady Issa®
U. Lisboa & INESC-ID
MA, USA Lisbon, Portugal
racle.com shadi.issa@tecnico.ulis

apt

CCS Concepts « Theory of computation — Concurrency
« Computer systems organization — Multicore archi-
tectures; « Software and its engineering — Mutual ex-
clusion; Concurrency control; Virtual memory

Keywords reader-writer locks, se hores, scalable syn-

chronization, lock-less, Linux kernel, parallel file systems
ACM Reference Format:
Alex Kogan, Dave D

Scalabl

Shady [ssa. 2020. Scalable Range Locks

ifteenth European
mp 3 3 20), April 27-30, 2020,
Heraklion, Greece. ACM, New York, NY, USA, 15 pages httpsy/doi
org/10.1145/3342195.3387533

1 Introduction
Range locks are a synchronization construct designed to pro-

vide concurrent access to multiple threads (or processes) to

wally, range locks

disje 2 shared resource. Ornj,

il parts ¢

were conceived in the context of file systems [2], to address
scenarios in which mullxph writers would want to write into

yroach of

different parts of the same file. A conventional ap

using a single file lock to mediate the access among those

wrilers creates a synchronization bottleneck. Range locks
however, allow each writer to specify (Le., lock)

we parl of
the file it is going to update, thus allowing senalization be-

tween wrilers accessing the same part of the file, but parallel

access for writers working on different pa

In recent years, there has been a surge of interest in range

locks in a different context. Specifically, the Linux kernel com-

munily constders using range locks to address contention

on mmap_sem [13], which is “one of the most intrac
yst

ble con-
19

the access

tention points in the memory-management sub:

neap_semis a reader-writer s

nphore protechi

to the virtual memory area (VMA) structures. VMA repre-

sents a distinct and contiguous region in the virtual address

space of an application; all VMA structures are organized

as a red-black tree (mm_rb) [6]. The mmap_sem semaphore
is ZL'Lllllr('ll l)" any v ”lll.:l xln‘:llnr\'»n‘l;ll\'\l I"‘l‘“l“\‘l). SI:L'h
as mapping, unmapping and mprotecting memory regions
and handlin

fault mterrupls. As a result, for data in-

tensive applications that operate on chunks of dynamucally

w contention on the semaphore becomes
9,11]

implementation of ran,
ly straig

allocated memory

a significant bottleneck

locks in the Linux
iforward. It uses a ran

The existin

lree

kernel s relat

Conclusion

e Scalable linked list-based Range Locks
 New speculative approach for the Linux VM

 Using Range Locks for concurrent data structures

28

