

Keystone: An Open Framework for Architecting Trusted Execution Environments

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, Dawn Song

Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley

Trusted Execution Environments (TEEs)

Trusted Execution Environments (TEEs)

<EURO/SYS'20>

Technical Contributions

□ Keystone: Customizable RISC-V TEEs

- □ Framework
 - Extensive benchmarking
 - ➢ Real-world applications
 - Multi-platform deployment

- Open-Source
 - ➤Full-stack available
 - Community-driven efforts
 - ➤TEE verification & research

Higher Privilege

Hardware-Enforced and Software-Defined Isolation

<EURO/SYS'20>

<EURO/SYS'20>

What Does Keystone Runtime Do?

What does Keystone Runtime Do?

What does Keystone Runtime Do?

What does Keystone Runtime Do?

Memory Management in Keystone

Enclave self resource management (e.g., dynamic memory resizing)
 Various memory protection mechanisms

<EURO/SYS'20>

<EURO/SYS'20>

<EURO/SYS'20>

Evaluation

Security Analysis

Keystone enclave defends various adversary models

Modularity Analysis

- Keystone supports fine-grained and modular configuration
- □ Trusted Computing Base Analysis
 - Various of real-world applications with a few thousands of LoC

Performance Analysis

- Security Monitor Overhead
- Runtime Overhead
- Cost of Memory Protection Mechanisms

Evaluation

Security Analysis

Keystone enclave defends various adversary models

☐ Modularity
≻ Keystone

Please check our paper!

Trusted Computing Base Analysis

Various of real-world applications with less than thousands of LoC

Performance Analysis

Security Monitor Overhead

Runtime Overhead

Cost of Memory Protection Mechanisms

Runtime Overhead: Memory Management

Cost of Memory Protection Mechanisms

<EURO/SYS'20>

Cost of Memory Protection Mechanisms

C ache Partitioning		O n-chip Exe Self P aging		cution Software Encr	
		Overhead (%)			# of Page
Benchmark	Ø	С	O , P	O , P , E	Faults
primes	-0.9	40.5	65475.5	*	66×10^{6}
miniz	0.1	128.5	80.2	615.5	18341
aes	-1.1	66.3	1471.0	4552.7	59716
bigint	-0.1	1.6	0.4	12.0	168
qsort	-2.8	-1.3	12446.3	26832.3	285147
sha512	-0.1	0.3	-0.1	-0.2	0
norx	0.1	0.9	2590.1	7966.4	58834
dhrystone	-0.2	0.3	-0.2	0.2	0

Conclusion

□ Introduced Keystone, a *customizable* framework for TEEs

□ Modular design with fine-grained customizability

□ Useful for building TEEs for different threat models, functionality, and performance requirements

□ Keystone is fully open-source under BSD 3-Clause

https://keystone-enclave.org

Thank You!

