Meerkat: Multicore-Scalable Replicated
Transactions
Following the Zero Coordination Principle



Distributed storage systems are getting faster

o~ . .
v Can we achieve this?
€ 10
: \
- . in-memory, kernel-bypass
4

2 8 .’
— ’
omm 4
E o

2 4
o’ 6 '¢
8 .
£
00 4 e
: ' ° ° °
(<] .° ritical section
N __——=_in-memory, in-kernel networking
9 ———mmmeeerPp-disk-based, in-kernel networking
- # cores 40



The Zero-Coordination Principle:

When transactions do not conflict:

® No writes to memory shared with other
cores (Pl)

® No cross-replica coordination (P2)



Common ways in which existing systems
violate ZCP

agreement on log order

Replication
contention on the log
centralized timestamp
Concurrency management
control

contention on the list of
active/validated
transactions




Replication

Concurrency
control

Other systems

Meerkat

agreement on log order

decentralized agreement
on transaction status

contention on the log

centralized timestamp
management

contention on the list of
active/validated
transactions

per-core record of
transactions

clients pick the commit
timestamp

key-parallel OCC




Meerkat’s approach

Get rid of the log!
Use a decentralized approach instead.



Meerkat’s decentralized approach

® Decentralized OCC

- client picks a commit timestamp using loosely
synchronized clocks

- replicas independently check for conflicts

® Fast, decentralized consensus

(fast path) - client learns the fate of the transaction

(slow path) .. client proposes to commit the transaction
only if OCC checks successful at a majority

Correctness comes from quorum intersection + pairwise conflict checks; see paper



Replication

Concurrency
control

Other systems

Meerkat

agreement on log order

decentralized agreement
on transaction status

contention on the log

centralized timestamp
management

contention on the list of
active/validated
transactions

per-core record of
transactions

clients pick the commit
timestamp

key-parallel OCC

ZCPVY

ZCP VY



Meerkat also has some nice performance
properties

® |ow latency (no leader)

= commits transactions in |IRTT
(in the absence of conflicts and failures)

- waits for replies from the fastest replicas

® Read from any replica

- balance the workload



Prototypes

No cross-processor No cross-replica

coordination coordination
KuaFu++ X X
TAPIR X v
Meerkat-PB 4 X

Meerkat v v

10



Meerkat scales near linearly when low
contention (uniform)

(00)

1 =/~ MEERKAT
—&— MEERKAT-PB
| =5— TAPIR

—>¢& KuaFu++

o)}

skog contention

N
1

Leader
bottleneck

\“,r'

/ ‘-.__——‘"—_——
S
N
____- v

Throughput (million txns/sec)

o
1

g

20 30

Contention on the
validation list

40

50

Number of server threads

60

70

short txns (YCSB-T), | mil keys/core

80



Meerkat performs well for low to medium
contention

C S S
©— MEERKAT
| —>¢~ MEERKAT-PB

Expensive aborts

o)

=

N
1

More slow paths

Throughput (million txns/sec)

o

0.0 0.2 0.4 0.6 0.8 1.0
Zipf coefficient

short txns (YCSB-T), | mil keys/core, 64 hyperthreads

12



