Meerkat: Multicore-Scalable Replicated
Transactions
Following the Zero Coordination Principle



Distributed storage systems are getting faster
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The Zero-Coordination Principle:

When transactions do not conflict:

® No writes to memory shared with other
cores (Pl)

® No cross-replica coordination (P2)



Common ways in which existing systems
violate ZCP

agreement on log order

Replication
contention on the log
centralized timestamp
Concurrency management
control

contention on the list of
active/validated
transactions
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Meerkat’s approach

Get rid of the log!
Use a decentralized approach instead.



Meerkat’s decentralized approach

® Decentralized OCC

- client picks a commit timestamp using loosely
synchronized clocks

- replicas independently check for conflicts

® Fast, decentralized consensus

(fast path) - client learns the fate of the transaction

(slow path) .. client proposes to commit the transaction
only if OCC checks successful at a majority

Correctness comes from quorum intersection + pairwise conflict checks; see paper
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Meerkat also has some nice performance
properties

® |ow latency (no leader)

= commits transactions in |IRTT
(in the absence of conflicts and failures)

- waits for replies from the fastest replicas

® Read from any replica

- balance the workload



Prototypes

No cross-processor No cross-replica

coordination coordination
KuaFu++ X X
TAPIR X v
Meerkat-PB 4 X

Meerkat v v
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Meerkat scales near linearly when low
contention (uniform)
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Meerkat performs well for low to medium
contention
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