Meerkat: Multicore-Scalable Replicated Transactions Following the Zero Coordination Principle

Distributed storage systems are getting faster

The Zero-Coordination Principle:

When transactions do not conflict:

- No writes to memory shared with other cores (PI)
- No cross-replica coordination (P2)

Common ways in which existing systems violate ZCP

	Other systems	Meerkat
Replication	agreement on log order	decentralized agreement on transaction status
	contention on the log	per-core record of transactions
Concurrency control	centralized timestamp management	clients pick the commit timestamp
	contention on the list of active/validated transactions	key-parallel OCC

Meerkat's approach

Get rid of the log! Use a decentralized approach instead.

Meerkat's decentralized approach

- Decentralized OCC
 - client picks a commit timestamp using loosely synchronized clocks
 - replicas independently check for conflicts
- Fast, decentralized consensus

(fast path) - client learns the fate of the transaction

(slow path) – client proposes to commit the transaction only if OCC checks successful at a majority

Correctness comes from quorum intersection + pairwise conflict checks; see paper

	Other systems	Meerkat	
Replication	agreement on log order	decentralized agreement on transaction status	ZCP √
	contention on the log	per-core record of transactions	
Concurrency control	centralized timestamp management	clients pick the commit timestamp	
	contention on the list of active/validated transactions	key-parallel OCC	

Meerkat also has some nice performance properties

- Low latency (no leader)
 - commits transactions in IRTT
 (in the absence of conflicts and failures)
 - waits for replies from the fastest replicas
- Read from any replica
 - balance the workload

Prototypes

Meerkat scales near linearly when low contention (uniform)

Meerkat performs well for low to medium contention

short txns (YCSB-T), I mil keys/core, 64 hyperthreads