
An HTM-Based
Update-side Synchronization
for RCU on NUMA systems

SeongJae Park, Paul E. McKenney, Laurent Dufour, Heon Y. Yeom

Disclaimer
● This work was done prior to the first author joining Amazon and while the

second author was at IBM
● The views expressed herein are those of the authors; they do not reflect the

views of their employers

The World Is In NUMA/Multi-CPU Era
● More than a decade ago, world has changed to multi-CPU era
● Nowadays, huge NUMA systems utilizing hundreds of threads are common
● Efficient synchronization primitives are the key of performance and scalability

https://www.karlrupp.net/wp-content/uploads/2015/06/35years.png

RCU: Read-Copy Update
● A synchronization mechanism for read-mostly workloads
● Provides almost ideal performance and scalability for reads

https://static.lwn.net/images/ns/kernel/rcu/GracePeriodGood.png

RCU-protected Linked List: Reading Items

A B C

Readers

An updaterUpdaters

Readers do nothing
special except notifying its
start and completion. Just

traverse the list.
X Y means X can see Y
A B means B is A’s next item

RCU-protected Linked List: Deletion of B

A

B

C

lock(update_lock);
a->next = c;
unlock(update_lock);

Updaters An updater

lock() is required to avoid
the race between
concurrent updates.
Use of the global locking
becomes the scalability
bottleneck.

X Y means X can see Y
A B means B is A’s next item

Readers

RCU-protected Linked List: Deletion of B

A

B

C

lock(update_lock);
a->next = c;
unlock(update_lock);

Updaters An updater

lock() is required to avoid
the race between
concurrent updates.
Use of the global locking
becomes the scalability
bottleneck.

Pre-existing
ReadersNew Readers

Now there are pre-existing
readers and new readers.

X Y means X can see Y
A B means B is A’s next item

RCU-protected Linked List: Deletion of B

A

B

C

Pre-existing
Readers

Wait until pre-existing
readers complete

New Readers

Updaters An updater

X Y means X can see Y
A B means B is A’s next item

RCU-protected Linked List: Deletion of B

A

B

C

Now nobody can see B

New Readers

Updaters An updater

X Y means X can see Y
A B means B is A’s next item

RCU-protected Linked List: Deletion of B

A

B

C

safe to reuse B!
free(B);

New Readers

Updaters An updater

X Y means X can see Y
A B means B is A’s next item

Called QSBR (Quiescent
State Based Reclaim)

Lack of RCU-centric update-side synchronization
● Intended design

○ allow users selecting or implementing best synchronization mechanism for them

● However, many users use the global locking
○ Simple to apply, but imposes scalability problem
○ To mitigate this problem, several RCU extensions have proposed

Read-Log-Update (RLU)
● Published in SOSP’15[1]

● Adopts a software transactional memory (STM) like logging mechanism

[1] Matveev, Alexander, et al. "Read-log-update: a lightweight synchronization mechanism for concurrent
programming." Proceedings of the 25th Symposium on Operating Systems Principles. ACM, 2015.

RLU-protected Linked List: Reading Items

A B C

Readers

Updaters An updater

RLU Readers required to
find out proper version, in

addition to notifying its
start and completion

X Y means X can see Y
A B means B is A’s next item

RLU-protected Linked List: Deletion of B

A B C

Readers

Updaters An updater rlu_lock();
create new version A’;

rlu_unlock();

A’ RLU-lock critical sections are similar
to STM transactions;

If it conflicts with others, it aborts.

RLU Readers required to
find out proper version, in

addition to notifying its
start and completion

X Y means X can see Y
A B means B is A’s next item

RLU-protected Linked List: Deletion of B

A B C

A’

New Readers

rlu_lock();
create new version A’;

rlu_unlock();

Updaters

Pre-existing
Readers

An updater

Reader-updater conflict is avoided
because readers search valid

versions by themselves

RLU-lock critical sections are similar
to STM transactions;

If it conflicts with others, it aborts.

RLU Readers required to
find out proper version, in

addition to notifying its
start and completion

X Y means X can see Y
A B means B is A’s next item

Oh, this is not the
version for me!

RLU-protected Linked List: Deletion of B

A B C

A’

New Readers

waits until pre-existing
readers completeUpdaters An updater

Pre-existing
ReadersRLU Readers required to

find out proper version, in
addition to notifying its
start and completion

X Y means X can see Y
A B means B is A’s next item

Oh, this is not the
version for me!

RLU-protected Linked List: Deletion of B

A’

B

C

A

New Readers

Swap A and A’;Updaters An updater

RLU Readers required to
find out proper version, in

addition to notifying its
start and completion

X Y means X can see Y
A B means B is A’s next item

Readers can now access A’
and C without referencing A;

Safe to reuse A and B

RLU-protected Linked List: Deletion of B

A’ C

New Readers

free(A);
free(B);

Updaters An updater

B
A

RLU Readers required to
find out proper version, in

addition to notifying its
start and completion

X Y means X can see Y
A B means B is A’s next item

RCU-HTM
● Published in PACT’17[1]

● Encapsulates each update in an HTM transaction

[1] Siakavaras, Dimitrios, et al. "RCU-HTM: combining RCU with HTM to implement highly efficient concurrent
binary search trees." Parallel Architectures and Compilation Techniques (PACT), 2017 26th International
Conference on. IEEE, 2017.

RCU-HTM-protected Linked List: Reading Items

A B C

Readers

Updaters An updater

Readers do nothing
special except

notifying its start and
completion. Just
traverse the list.

X Y means X can see Y
A B means B is A’s next item

RCU-HTM-protected Linked List: Deletion of B

A

B

C

begin_htm_trx();
a->next = c;

commit_htm_trx();

Updaters

Encapsulate data updates
within HTM transaction;

HTM guarantees
consistency and scalability

An updater

New Readers Pre-existing
Readers

X Y means X can see Y
A B means B is A’s next item

Else are same to QSBR;
Wait until safe and dealloc

Will Those Scale On NUMA Machines?
● Both RLU and RCU-HTM had not evaluated on huge NUMA machine

○ RLU was evaluated with single socket machine utilizing 16 threads
○ RCU-HTM evaluated with single socket machine utilizing 44 threads

● Server: 4 sockets, 18 cores, hyper-threaded (total 144 h/w threads)
○ Every following evaluation uses this server

● Workload: Random reads, inserts, and deletes to kernel space linked lists
○ Each of the linked lists are protected by RCU, RLU, and RCU-HTM, respectively
○ 256 initial items pre-loaded (sufficient to scale with 144 threads)
○ Measure operations per second with varying number of threads and update rate

Unexpected Poor Scalability Revealed
● RLU imposes significant overhead to reads
● With updates, RLU and RCU-HTM degrade as multiple NUMA nodes used

Root-causes and Implications of The Results
● RLU’s read overhead apparently comes from the valid version searching

○ Read-mostly performance-sensitive workloads would not use RLU instead of RCU!

● NUMA-oblivious designs of RLU and RCU-HTM degrade update scalability
● In case of RCU-HTM, amplification of HTM aborts on NUMA impacts

○ Long latency between NUMA makes transaction time long and thus easy to be aborted
○ The dominate readers conflict with HTM transactions of update threads and aborts them

● HTM benefit is clear, we need NUMA-aware HTM use for read-mostly works

Read Update on single NUMA node Update on multiple NUMA nodes

RCU Almost Ideal Bad
(Global locking)

Bad
(Global locking)

RLU Far from ideal
(Version check overhead) Good Bad

(NUMA oblivious)

RCU-HTM Almost Ideal Best
(No software locking overhead)

Horrible
(HTM aborts amplification)

Our Design Principles for New RCU Extension
We design new RCU extension called RCX with our principles

Our Design Principles for New RCU Extension
We design new RCU extension called RCX with our principles

1. Do fine-grained update-side synchronization

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

Our Design Principles for New RCU Extension
We design new RCU extension called RCX with our principles

1. Do fine-grained update-side synchronization
2. Use pure RCU read mechanism for the ideal read performance and scalability

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

Our Design Principles for New RCU Extension
We design new RCU extension called RCX with our principles

1. Do fine-grained update-side synchronization
2. Use pure RCU read mechanism for the ideal read performance and scalability
3. Use HTM; Only HTM provides H/W-oriented high performance

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

Our Design Principles for New RCU Extension
We design new RCU extension called RCX with our principles

1. Do fine-grained update-side synchronization
2. Use pure RCU read mechanism for the ideal read performance and scalability
3. Use HTM; Only HTM provides H/W-oriented high performance
4. Access only NUMA-local data objects within HTM transaction

a. Otherwise, abort rates exponentially increase

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

Our Design Principles for New RCU Extension
We design new RCU extension called RCX with our principles

1. Do fine-grained update-side synchronization
2. Use pure RCU read mechanism for the ideal read performance and scalability
3. Use HTM; Only HTM provides H/W-oriented high performance
4. Access only NUMA-local data objects within HTM transaction

a. Otherwise, abort rates exponentially increase

5. Isolate the HTM working set from the dominant readers
a. Otherwise, the readers abort HTM transactions

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

RCX Interface

A

B

C

Readers

UpdaterUpdaters

Readers do nothing
special except notifying its
start and completion. Just

traverse the list.
X Y means X can see Y
A B means B is A’s next item

RCX Interface

A

B

C

Readers

Updater rcx_lock(A,B,C);
a->next = c;

rcx_unlock(A,B,C);

Updaters

In RCX, update critical
sections should specify items

to update

Readers do nothing
special except notifying its
start and completion. Just

traverse the list.
X Y means X can see Y
A B means B is A’s next item

RCX Interface

A

B

C

Readers

Updater rcx_lock(A,B,C);
a->next = c;

rcx_unlock(A,B,C);

Updaters

Readers do nothing
special except notifying its
start and completion. Just

traverse the list.
X Y means X can see Y
A B means B is A’s next item

In RCX, update critical
sections should specify items

to update

Else are same to QSBR;
Wait until safe and dealloc

rcx_lock() in Detail

... RCX-protected objectsCPU 0

CPU 1

CPU m

...

Node 0

CPU 0

CPU 1

CPU m

...

Node 0

rcx_lock() in Detail
● Embed node-local locks and a global lock to each object

... RCX-protected objects

Global locks

Local locks for node 0
Local locks for node 1

...

...

...

CPU 0

CPU 1

CPU m

...

Node 0

CPU 0

CPU 1

CPU m

...

Node 0

rcx_lock() in Detail
● Embed node-local locks and a global lock to each object
● Updaters first acquire the per-node local lock using HTM

... RCX-protected objects

Global locks

Local locks for node 0
Local locks for node 1

...

...

...

CPU 0

CPU 1

CPU m

...

Node 0

CPU 0

CPU 1

CPU m

...

Node 0

rcx_lock() in Detail
● Embed node-local locks and a global lock to each object
● Updaters first acquire the per-node local lock using HTM
● Than, commit the transaction and acquire the global lock using spinlock

... RCX-protected objects

Global locks

Local locks for node 0
Local locks for node 1

...

...

...

CPU 0

CPU 1

CPU m

...

Node 0

CPU 0

CPU 1

CPU m

...

Node 0

rcx_lock() in Detail
● Embed node-local locks and a global lock to each object
● Updaters first acquire the per-node local lock using HTM
● Than, commit the transaction and acquire the global lock using spinlock
● Updaters who acquired both locks can update the items

... RCX-protected objects

Global locks

Local locks for node 0
Local locks for node 1

...

...

...

CPU 0

CPU 1

CPU m

...

Node 0

CPU 0

CPU 1

CPU m

...

Node 0

RCX and The Principles

RCX and The Principles
● Do fine-grained update-side synchronization

○ Compete with threads accessing same objects only

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

RCX O O O O O

RCX and The Principles
● Do fine-grained update-side synchronization

○ Compete with threads accessing same objects only

● Use pure RCU read mechanism

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

RCX O O O O O

RCX and The Principles
● Do fine-grained update-side synchronization

○ Compete with threads accessing same objects only

● Use pure RCU read mechanism
● Use HTM

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

RCX O O O O O

RCX and The Principles
● Do fine-grained update-side synchronization

○ Compete with threads accessing same objects only

● Use pure RCU read mechanism
● Use HTM
● Access only NUMA-local data objects within HTM transaction

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

RCX O O O O O

RCX and The Principles
● Do fine-grained update-side synchronization

○ Compete with threads accessing same objects only

● Use pure RCU read mechanism
● Use HTM
● Access only NUMA-local data objects within HTM transaction
● Isolate the working set of HTM from the dominant Readers

○ HTM in RCX touches local locks only, which is invisible to readers

Principle #1 Principle #2 Principle #3 Principle #4 Principle #5

RCU X O X N/A N/A

RLU O X X N/A N/A

RCU-HTM O O O X X

RCX O O O O O

Evaluations

RCU Variants-Protected Linked Lists
● RCX Performs best, for both read only and updates mixed workload
● Similar results with hash tables

Number of threads

Macro Benchmarks
● We further applied RCX to systems having scalability problems

○ Virtual memory management system of Linux
○ In-memory DBMS

RCU-protected VMA-tree
● Linux protects each VMA-tree with a global reader-writer lock (mmap_sem)
● Two similar RCU approaches proposed: RCUVM[1] and SPF[2]

● However, VMA-tree update intensive workloads receive no benefit
● We further apply RCX on top of SPF and call it RCXVM

[1] Clements, Austin T., M. Frans Kaashoek, and Nickolai Zeldovich.
 "Scalable address spaces using RCU balanced trees." in ACM SIGPLAN Notices 47.4 (2012): 199-210.
[2] H USSEIN , N. "Another attempt at speculative page-fault handling." https://lwn.net/Articles/730531/, 2017.

https://lwn.net/Articles/730531/

Virtual Memory Scalability Evaluation Result
● RCXVM further improves Metis and Ebizzy

Metis Psearchy Ebizzy

Th
ro

ug
hp

ut

Number of threads

Virtual Memory Scalability Evaluation Result
● RCXVM further improves Metis and Ebizzy

○ Metis: Up to 24.03x of Original, 2.10x of SPF (144 threads)

Metis Psearchy Ebizzy

Th
ro

ug
hp

ut

Number of threads

Virtual Memory Scalability Evaluation Result
● RCXVM further improves Metis and Ebizzy

○ Metis: Up to 24.03x of Original, 2.10x of SPF (144 threads)
○ Ebizzy: Up to 5.60x of Original (72 threads), 2.23x of SPF (36 threads)

Metis Psearchy Ebizzy

Th
ro

ug
hp

ut

Number of threads

Virtual Memory Scalability Evaluation Result
● RCXVM further improves Metis and Ebizzy

○ Metis: Up to 24.03x of Original, 2.10x of SPF (144 threads)
○ Ebizzy: Up to 5.60x of Original (72 threads), 2.23x of SPF (36 threads)

● Psearchy and Ebizzy with many threads show no benefit
○ The bottleneck (tlb flushes) is out of RCXVM coverage

Metis Psearchy Ebizzy

Th
ro

ug
hp

ut

Number of threads

In-memory DBMS Scalability
● Kyoto CacheDB uses global reader-writer lock; We implement two variants

substituting it with fine-grained RCU and RCX, respectively
● With 20 million records evaluation, RCX shows improvements

○ Up to 17.28x of Original and 1.3x of fine-grained RCU with 10% updates

Read-only 10% updates

Number of threads

In-memory DBMS Scalability
● Kyoto CacheDB uses global reader-writer lock; We implement two variants

substituting it with fine-grained RCU and RCX, respectively
● With 20 million records evaluation, RCX shows improvements

○ Up to 17.28x of Original and 1.3x of fine-grained RCU with 10% updates

Read-only 10% updates

Number of threads

Conclusion
● RCX achieves best update while preserving the almost ideal read in terms of

performance and scalability, owing to its NUMA-aware use of HTM
● Many details and additional things in the paper

○ Detailed investigations of state-of-the-arts including an HMCS lock and RCX variants
○ Optimization of RCX for memory efficiency and HTM implementation details

● The source code is available: https://github.com/rcx-sync
Read Single node update Multiple NUMA node update

RCU Almost Ideal Bad
(Global locking)

Bad
(Global locking)

RLU Far from ideal
(Version check overhead) Good Bad

(NUMA oblivious)

RCU-HTM Almost Ideal Best
(No software locking overhead)

Horrible
(HTM aborts amplification)

RCX Almost Ideal Best Best

https://github.com/rcx-sync

Thank You

