MAKERS

EvenDB: Optimizing Key-Value Storage for Spatial Locality

Eran Gilad, Edward Bortnikov, Anastasia Braginsky, Yonatan Gottesman, Eshcar Hillel (Yahoo Research), Idit Keidar (Technion), Nurit Moscovici (Outbrain), Rana Shahout (Technion)

• key -> value mapping

- key -> value mapping
- skewed workload: some keys are hotter

- key -> value mapping
- skewed workload: some keys are hotter
- spatial locality: some ranges are hotter
 - o e.g., complex keys

- key -> value mapping
- skewed workload: some keys are hotter
- spatial locality: some ranges are hotter
 - o e.g., complex keys
- Sample production trace:
 - appname_timestamp
 - 1% of apps ⇒ 1% key prefixes
 ⇒ 94% of events

LSM-trees

LSM-trees are designed for temporal locality

LSM-trees are less suited for spatial locality

EvenDB

- Ordered key-value store
- Optimized for spatial locality
- Low write amplification
- Persistent, fast recovery
- Atomic operations, including scan

Chunk-based organization

Dynamically partitioned key space into chunks

- Much smaller than shards
- Much larger than blocks

Chunks are the basic unit for

- O Disk I/O
- Compaction
- Memory caching
- Concurrency control

Chunks metadata

Chunks index

RAM - disk

Disk storage - updates

Disk storage - lookups

Memory cache - updates

Memory cache - lookups

verizon√ media

Evaluation

3 benchmark suites

- Traces from internal production system, 256GB DB some presented next
- O Standard and extended YCSB benchmarks results in paper

State-of-the-art LSM: RocksDB

Real dataset ingestion

Throughput dynamics - 256GB DB creation

EvenDB 4.4x faster, write amp. 4x lower (better)

Execution time, minutes

Compactions impact

Real dataset scans

Summary

- Thank you! Qs?
- EvenDB introduces a novel key-value store architecture
- Chunk arrangement better suited for spatially-local workloads than LSM:
 - Lower write amplification
 - Single level of storage, no overlapping
 - Memory serves reads and writes
- EvenDB outperforms RocksDB when:
 - Workload is spatially-local or most working set fits in RAM
 - In par otherwise
 - Demonstrated in real workload and synthetic YCSB benchmarks

