
Can Far Memory Improve Job
Throughput?

Eurosys 2020 Talk

Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo,
Amy Ousterhout, Marcos K. Aguilera (VMware Research),

Aurojit Panda (NYU), Sylvia Ratnasamy, Scott Shenker

The rise of far memory
● Demand for memory has grown faster than availability

○ Prevalence of in memory workloads
○ End of Moore’s Law hinders DRAM progress

● Far memory allows you to use memory that is remote to the server

Context: Memory provisioning

● Unbalanced memory configurations significantly limit memory bandwidth
○ 1 DIMM per controller → 35% of max system bandwidth
○ Balanced configuration: all slots 0 equal capacity and all slots 1 equal capacity

● Local memory can only be provisioned at coarse granularity

192GB = 12x16GB
 +48GB = 12x 4GB

● If we measure the granularity of upgrades in memory per core in the cluster:
○ Far memory can be upgraded at much finer granularity than local memory

=240GB, 25% increase

Focus of our work

1. How to make transparent access to far memory fast?

2. How to decide how much far memory each job uses?

3. Once we solve 1 and 2, can far memory improve job
 throughput?

● Operating system support → swapping with RDMA
○ Page fault handler brings pages from far memory into local

● Poor latency and bandwidth in previous systems due to overheads in page
fault handler:

○ Head-of-line blocking (high priority reads queued behind low priority reads)
○ Asynchronous critical page reads (require context switch)
○ Page reclamation during page faults

● Fastswap solves key overheads:
○ Average page reads <5us
○ Applications can access far memory at 10Gbps (one thread), and 25Gbps (7 threads).

Transparent and fast far memory access

Fastswap read throughput

1.7x

3.2x

How much far memory each job should use?
● Far memory aware cluster scheduler

○ Improve job throughput
○ Pack the cluster densely by using far memory

● Strategy:
○ If memory is not the constraining resource to admit more jobs → normal scheduler
○ If memory becomes the constraining resource

■ Scheduler shrinks local memory on existing jobs → residuals placed on far memory

● Key challenge: Performance degradation is application-dependant
○ Scheduler needs to take this into account when shrinking

Job degradation profiles with Fastswap

1.11x

3.03x

Memory-time policy
● Uses memory-time products to find optimal shrink ratios for a set of jobs

A = local memory-time
(no far memory used)

B+C = new memory-time when far
memory is used

Local memory ratio

● Optimization problem, intuition:
○ Want to find the ratios r for each job in the set
○ Such that we minimize B (local memory) usage over time

● Optimization runs when a job is admitted, or when a job finishes

Can Far Memory Improve Job Throughput?

● Baseline rack = No far mem, 40 servers (each 192GB and 48 cores)
○ Far (+0%) = convert compute node into far memory node; i.e. 192GB of far mem
○ Far (+X%) = X% additional rack memory available in far memory node

● Workload: a list of 6000 mixed jobs with uniformly random arrivals
○ Each workload is executed in different rack configurations

Conclusion

● How to make transparent access to far memory fast?
○ Fastswap provides transparent, and higher throughput far memory access than previous

approaches, by 1.7x on single thread and 3.2x on multithreaded

● How to decide how much far memory each job uses?
○ Our far memory aware scheduler decides by using its memory-time policy

● Can far memory improve job throughput?
○ Yes, makespan improvements range from 10 to 40%

Thank you.

