Avoiding Scheduler Subversion using Scheduler-Cooperative Locks

<u>Yuvraj Patel</u>, Leon Yang^{*}, Leo Arulraj⁺,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift University of Wisconsin-Madison

* - Now at Facebook, + - Now at Cohesity

Competitive environment

Example use-cases of modern data centers

- Every container/VM/user expects their desired share of resources
- Schedulers play an important role to fulfill the expectations
- CPU schedulers important for CPU allocation
- Majority of the systems are concurrent systems protected by locks

The problem – Scheduler Subversion

- Accessing locks can lead to new problem "Scheduler subversion"
- Locks determine CPU allocation instead of the scheduler

The problem – Scheduler Subversion

- Accessing locks can lead to new problem "Scheduler subversion"
- Locks determine CPU allocation instead of the scheduler

The solution – Scheduler-Cooperative Locks

- Scheduler-Cooperative Locks (SCL) guarantee lock usage fairness by aligning with scheduling goals
- Three important design components to build SCLs
 - Track lock usage
 - Penalize dominant users
 - Provide dedicated window of opportunity to every user
- Implementation Two user-space locks and one kernel lock
- Evaluation
 - Correctness Allocate lock usage according to the scheduling goals even in extreme cases
 - Performance Efficient and scalable
 - Useful Apply SCLs to real-world systems UpScaleDB, KyotoCabinet, Linux kernel

- Introduction
- The Problem Scheduler Subversion
- The Solution Scheduler-Cooperative Locks
- Evaluation
- Conclusion

- UpScaleDB embedded key-value database
- Global mutex lock
- Workload
 - 8 threads pinned on 4 CPU
 - 4 threads insert ops
 - 4 threads find ops
 - Default thread priority
 - Equal CPU allocation
 - Run for 120 seconds

- UpScaleDB embedded key-value database
- Global mutex lock
- Workload
 - 8 threads pinned on 4 CPU
 - 4 threads insert ops
 - 4 threads find ops
 - Default thread priority
 - Equal CPU allocation
 - Run for 120 seconds

- UpScaleDB embedded key-value database
- Global mutex lock
- Workload
 - 8 threads pinned on 4 CPU
 - 4 threads insert ops
 - 4 threads find ops
 - Default thread priority
 - Equal CPU allocation
 - Run for 120 seconds

- UpScaleDB embedded key-value database
- Global mutex lock
- Workload
 - 8 threads pinned on 4 CPU
 - 4 threads insert ops
 - 4 threads find ops
 - Default thread priority
 - Equal CPU allocation
 - Run for 120 seconds

Nearly six times more CPU allocated to insert threads than find threads

- UpScaleDB embedded key-value database
- Global mutex lock
- Workload
 - 8 threads pinned on 4 CPU
 - 4 threads insert ops
 - 4 threads find ops
 - Default thread priority
 - Equal CPU allocation
 - Run for 120 seconds

Nearly six times more CPU allocated to insert threads than find threads

Causes of scheduler subversion

• Two reasons

Reason #1 - Different critical section lengths

- Threads spend varied amount of time in critical section
- Thread dwelling longer in critical section becomes dominant user of CPU

Reason #2 - Majority locked run time

- Time spent in critical section is high -> contention
- Lock algorithm determines which threads scheduled
- Common case in many applications and OS ^{1,2,3,4}

- 2. Remote Core Locking: Migrating Critical-Section Execution to Improve the Performance of Multithreaded Applications. USENIX ATC 2012
- 3. Understanding Manycore Scalability of File Systems, USENIX ATC 2016
- 4. Non-scalable locks are dangerous. Linux Symposium, 2012

^{1.} Lock–Unlock: Is That All? A Pragmatic Analysis of Locking in Software Systems. ACM Trans. Comput. Syst., 36(1), March 2019

- Introduction
- The Problem Scheduler Subversion
- The Solution Scheduler-Cooperative Locks
- Evaluation
- Conclusion

Scheduler-Cooperative Locks (SCLs)

- Lock opportunity
 - Amount of time thread holds lock or could acquire lock when free
 - Important metric to measure lock usage fairness
- Philosophy
 - Prevent dominant users from acquiring lock
 - Ensure equal "lock opportunity" to every user
- Design locks that aligns with scheduling goals
- Three important design components

#1 - Track lock usage

• Track time spent in critical section

#1 - Track lock usage

• Track time spent in critical section

```
scl_lock()
  ....
  lock.start_cs = now()
scl_unlock()
  ....
  end_cs = now()
  cs_time = end_cs - lock.start_cs
  ....
```

#1 - Track lock usage

- Track time spent in critical section
- Tracking helps to identify dominant users

```
scl_lock()
  ....
  lock.start_cs = now()
scl_unlock()
  ....
  end_cs = now()
  cs_time = end_cs - lock.start_cs
  ....
```

#1 - Track lock usage

- Track time spent in critical section
- Tracking helps to identify dominant users
- Tracking flexible
 - Any schedulable entity such as threads, processes, containers
 - Type of work readers or writers

```
scl_lock()
  ....
  lock.start_cs = now()
scl_unlock()
  ....
  end_cs = now()
  cs_time = end_cs - lock.start_cs
  ....
```

#2 – Penalize users

• Penalize dominant users

#2 – Penalize users

- Penalize dominant users
- Penalty calculated while releasing lock
- Penalty applied while acquiring lock
- Prevent user from acquiring lock

```
scl_lock()
  if (penalty) {
    sleep-until-penalty-time
  ....
  lock.start_cs = now()
scl_unlock()
  end cs = now()
  cs_time = end_cs - lock.start_cs
  calculate penalty, penalty-time
```

....

#2 – Penalize users

- Penalize dominant users
- Penalty calculated while releasing lock
- Penalty applied while acquiring lock
- Prevent user from acquiring lock
- Penalty based on scheduling goals

```
scl_lock()
  if (penalty) {
    sleep-until-penalty-time
  ....
  lock.start cs = now()
scl_unlock()
  end cs = now()
  cs_time = end_cs - lock.start_cs
  calculate penalty, penalty-time
```

 Lock slice – dedicated window of opportunity to every user

 Lock slice – dedicated window of opportunity to every user

P0

P1

 Lock slice – dedicated window of opportunity to every user

Slice owner is lock owner

- Lock slice dedicated window of opportunity to every user
- Owner can acquire lock multiple times within a slice without penalty

Lock acquisition is fast-pathed improving throughput

Slice owner is lock owner

- Lock slice dedicated window of opportunity to every user
- Owner can acquire lock multiple times within a slice without penalty

Slice ownership transferred to P1

- Lock slice dedicated window of opportunity to every user
- Owner can acquire lock multiple times within a slice without penalty

Size of individual critical section can vary

- Lock slice dedicated window of opportunity to every user
- Owner can acquire lock multiple times within a slice without penalty
- Slice ownership alternates between users

Wait-times depends on lock slice size

- Lock slice dedicated window of opportunity to every user
- Owner can acquire lock multiple times within a slice without penalty
- Slice ownership alternates between users

- Fixed-sized virtual critical section
- Transferred to next owner based on scheduling policy

SCLs Implementation

- Three different implementations
 - u-SCL User-space mutex replacement
 - RW-SCL Reader-Writer Scheduler-Cooperative Lock
 - k-SCL Kernel version of u-SCL
- New and existing optimization techniques
- u-SCL
 - Spin-and-park To minimize CPU time spent while waiting
 - Next-thread prefetch Next owner ready before slice ownership handoff
- RW-SCL
 - Per NUMA node counters
- More details in paper

- Introduction
- The Problem Scheduler Subversion
- The Solution Scheduler-Cooperative Locks
- Evaluation
- Conclusion

Results summary

- Lock usage fairness Allocate CPU proportionally even in extreme cases
- Lock overhead Efficient and scales well up to 32 CPU
- Lock slice sizes vs. Performance
 - Large slice size Higher throughput
 - Small slice size Low Latency
- Demonstrate real-world utility of SCLs
 - Port RW-SCL to KyotoCabinet
 - Replace global file-system rename lock with k-SCL in Linux kernel

- Introduction
- The Problem Scheduler Subversion
- The Solution Scheduler-Cooperative Locks
- Evaluation
- Conclusion

Conclusion

- Lock usage determines CPU allocation subverting scheduling goals
- Introduce Scheduler-Cooperative Locks (SCL) to address the problem
- Evaluation shows the performance characteristics and versatility of SCLs
- Future work Build SCLs that support other scheduling goals

Source - https://research.cs.wisc.edu/adsl/Software/

Thank you 😳