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Clients • Every container/VM/user expects 
their desired share of resources

• Schedulers play an important role 
to fulfill the expectations

• CPU schedulers important for CPU 
allocation

• Majority of the systems are 
concurrent systems protected by 
locks
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The problem – Scheduler Subversion

• Accessing locks can lead to new problem - “Scheduler subversion”

• Locks determine CPU allocation instead of the scheduler
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• 2 Processes – P0 & P1
• Default priority
• P0 holds the lock 

twice as long as P1
• Ticket lock-

acquisition fairness
• Linux CFS Scheduler

Expected
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acquisition fairness
• Linux CFS Scheduler
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CPU allocation 
aligns with lock 
usage



The solution – Scheduler-Cooperative Locks

• Scheduler-Cooperative Locks (SCL) guarantee lock usage fairness by 
aligning with scheduling goals

• Three important design components to build SCLs
• Track lock usage
• Penalize dominant users
• Provide dedicated window of opportunity to every user

• Implementation - Two user-space locks and one kernel lock

• Evaluation
• Correctness - Allocate lock usage according to the scheduling goals even in extreme 

cases
• Performance - Efficient and scalable
• Useful – Apply SCLs to real-world systems – UpScaleDB, KyotoCabinet, Linux kernel
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• Introduction

• The Problem – Scheduler Subversion

• The Solution – Scheduler-Cooperative Locks

• Evaluation

• Conclusion
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• UpScaleDB – embedded key-value database

Lock & CPU dominance
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• Global mutex lock

• Workload
• 8 threads pinned on 4 CPU

• 4 threads insert ops
• 4 threads find ops

• Default thread priority
• Equal CPU allocation

• Run for 120 seconds
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to insert threads than find threads
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• UpScaleDB – embedded key-value database
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• Global mutex lock

• Workload
• 8 threads pinned on 4 CPU

• 4 threads insert ops
• 4 threads find ops

• Default thread priority
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to insert threads than find threads Insert threads 

dominate lock usage



Causes of scheduler subversion

• Two reasons
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Reason #1 - Different critical section lengths

• Threads spend varied amount of time in 
critical section

• Thread dwelling longer in critical section 
becomes dominant user of CPU
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Reason #2 - Majority locked run time

• Time spent in critical section is high -> contention

• Lock algorithm determines which threads scheduled

• Common case in many applications and OS 1,2,3,4
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Scheduler-Cooperative Locks (SCLs)

• Lock opportunity
• Amount of time thread holds lock or could acquire lock when free

• Important metric to measure lock usage fairness

• Philosophy
• Prevent dominant users from acquiring lock

• Ensure equal “lock opportunity” to every user

• Design locks that aligns with scheduling goals

• Three important design components
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#1 - Track lock usage

• Track time spent in critical section

17



#1 - Track lock usage

• Track time spent in critical section
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scl_lock()
{

…..
lock.start_cs = now()

}

scl_unlock()
{

…..
end_cs = now()
cs_time = end_cs – lock.start_cs
…..

}



#1 - Track lock usage

• Track time spent in critical section

• Tracking helps to identify dominant 
users
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#1 - Track lock usage

• Track time spent in critical section

• Tracking helps to identify dominant 
users

• Tracking flexible
• Any schedulable entity such as 

threads, processes, containers

• Type of work – readers or writers
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scl_lock()
{

…..
lock.start_cs = now()

}

scl_unlock()
{

…..
end_cs = now()
cs_time = end_cs – lock.start_cs
…..

}



#2 – Penalize users 

• Penalize dominant users
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#2 – Penalize users 

• Penalize dominant users

• Penalty calculated while releasing lock

• Penalty applied while acquiring lock

• Prevent user from acquiring lock
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scl_lock()
{

if (penalty) {
sleep-until-penalty-time

}
…..
lock.start_cs = now()

}

scl_unlock()
{

…..
end_cs = now()
cs_time = end_cs – lock.start_cs
calculate penalty, penalty-time
…..

}



#2 – Penalize users 

• Penalize dominant users

• Penalty calculated while releasing lock

• Penalty applied while acquiring lock

• Prevent user from acquiring lock

• Penalty based on scheduling goals
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#3 – Dedicated window of opportunity
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• Lock slice – dedicated window of 
opportunity to every user
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• Lock slice – dedicated window of 
opportunity to every user

• Owner can acquire lock multiple 
times within a slice without penalty
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Lock slice (2ms)

Time

Slice owner is lock owner

Lock acquisition is 
fast-pathed improving 
throughput
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times within a slice without penalty

P0

P1

Lock slice (2ms)

Lock slice (2ms)

Time

Slice ownership transferred to P1



#3 – Dedicated window of opportunity
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• Lock slice – dedicated window of 
opportunity to every user

• Owner can acquire lock multiple 
times within a slice without penalty
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#3 – Dedicated window of opportunity
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• Lock slice – dedicated window of 
opportunity to every user

• Owner can acquire lock multiple 
times within a slice without penalty

• Slice ownership alternates between 
users
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#3 – Dedicated window of opportunity
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• Lock slice – dedicated window of 
opportunity to every user

• Owner can acquire lock multiple 
times within a slice without penalty

• Slice ownership alternates between 
users
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Lock slice
- Fixed-sized virtual critical section
- Transferred to next owner based 

on scheduling policy



SCLs Implementation

• Three different implementations
• u-SCL – User-space mutex replacement
• RW-SCL – Reader-Writer Scheduler-Cooperative Lock
• k-SCL – Kernel version of u-SCL

• New and existing optimization techniques

• u-SCL
• Spin-and-park – To minimize CPU time spent while waiting
• Next-thread prefetch – Next owner ready before slice ownership handoff

• RW-SCL
• Per NUMA node counters

• More details in paper
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Evaluation

• Same UpScaleDB experiment
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Workload – 8 threads (4 insert 
threads + 4 find threads) pinned on 
4 CPU, equal CPU allocation
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Results summary

• Lock usage fairness – Allocate CPU proportionally even in extreme 
cases

• Lock overhead - Efficient and scales well up to 32 CPU

• Lock slice sizes vs. Performance
• Large slice size – Higher throughput

• Small slice size – Low Latency

• Demonstrate real-world utility of SCLs
• Port RW-SCL to KyotoCabinet

• Replace global file-system rename lock with k-SCL in Linux kernel
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Conclusion

• Lock usage determines CPU allocation subverting scheduling goals

• Introduce Scheduler-Cooperative Locks (SCL) to address the problem

• Evaluation shows the performance characteristics and versatility of 
SCLs

• Future work – Build SCLs that support other scheduling goals
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Source - https://research.cs.wisc.edu/adsl/Software/



Thank you ☺
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