
Avoiding Scheduler Subversion using 
Scheduler-Cooperative Locks

Yuvraj Patel, Leon Yang*, Leo Arulraj+, 

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift

University of Wisconsin-Madison

* - Now at Facebook, + - Now at Cohesity



Competitive environment

2

App 1

Bins/Lib

Container Engine

Operating System

Physical
Infrastructure

App 2

Bins/Lib

App 1

Bins/Lib

Hypervisor

Physical
Infrastructure

App 2

Bins/Lib

Guest OS Guest OS

Example use-cases of modern data centers

C
o

n
ta

in
er

s

VM1 VM2

Clients • Every container/VM/user expects 
their desired share of resources

• Schedulers play an important role 
to fulfill the expectations

• CPU schedulers important for CPU 
allocation

• Majority of the systems are 
concurrent systems protected by 
locks

C2C1



The problem – Scheduler Subversion

• Accessing locks can lead to new problem - “Scheduler subversion”

• Locks determine CPU allocation instead of the scheduler

3

• 2 Processes – P0 & P1
• Default priority
• P0 holds the lock 

twice as long as P1
• Ticket lock-

acquisition fairness
• Linux CFS Scheduler

Expected



The problem – Scheduler Subversion

• Accessing locks can lead to new problem - “Scheduler subversion”

• Locks determine CPU allocation instead of the scheduler

4

• 2 Processes – P0 & P1
• Default priority
• P0 holds the lock 

twice as long as P1
• Ticket lock-

acquisition fairness
• Linux CFS Scheduler

Expected Observed

CPU allocation 
aligns with lock 
usage



The solution – Scheduler-Cooperative Locks

• Scheduler-Cooperative Locks (SCL) guarantee lock usage fairness by 
aligning with scheduling goals

• Three important design components to build SCLs
• Track lock usage
• Penalize dominant users
• Provide dedicated window of opportunity to every user

• Implementation - Two user-space locks and one kernel lock

• Evaluation
• Correctness - Allocate lock usage according to the scheduling goals even in extreme 

cases
• Performance - Efficient and scalable
• Useful – Apply SCLs to real-world systems – UpScaleDB, KyotoCabinet, Linux kernel

5



• Introduction

• The Problem – Scheduler Subversion

• The Solution – Scheduler-Cooperative Locks

• Evaluation

• Conclusion

6



• UpScaleDB – embedded key-value database

Lock & CPU dominance

7

• Global mutex lock

• Workload
• 8 threads pinned on 4 CPU

• 4 threads insert ops
• 4 threads find ops

• Default thread priority
• Equal CPU allocation

• Run for 120 seconds



Lock & CPU dominance

• UpScaleDB – embedded key-value database

8

• Global mutex lock

• Workload
• 8 threads pinned on 4 CPU

• 4 threads insert ops
• 4 threads find ops

• Default thread priority
• Equal CPU allocation

• Run for 120 seconds
0

5

10

15

20

25

30

F1 F2 F3 F4 I1 I2 I3 I4

C
P

U
 T

im
e 

(S
ec

o
n

d
s)

Thread

Lock Hold Time

Wait + Other



Lock & CPU dominance

• UpScaleDB – embedded key-value database

9

• Global mutex lock

• Workload
• 8 threads pinned on 4 CPU

• 4 threads insert ops
• 4 threads find ops

• Default thread priority
• Equal CPU allocation

• Run for 120 seconds
0

5

10

15

20

25

30

F1 F2 F3 F4 I1 I2 I3 I4

C
P

U
 T

im
e 

(S
ec

o
n

d
s)

Thread

Lock Hold Time

Wait + Other



Lock & CPU dominance

• UpScaleDB – embedded key-value database

10

• Global mutex lock

• Workload
• 8 threads pinned on 4 CPU

• 4 threads insert ops
• 4 threads find ops

• Default thread priority
• Equal CPU allocation

• Run for 120 seconds
0

5

10

15

20

25

30

F1 F2 F3 F4 I1 I2 I3 I4

C
P

U
 T

im
e 

(S
ec

o
n

d
s)

Thread

Lock Hold Time

Wait + Other

Nearly six times more CPU allocated 
to insert threads than find threads



Lock & CPU dominance

• UpScaleDB – embedded key-value database

11

• Global mutex lock

• Workload
• 8 threads pinned on 4 CPU

• 4 threads insert ops
• 4 threads find ops

• Default thread priority
• Equal CPU allocation

• Run for 120 seconds
0

5

10

15

20

25

30

F1 F2 F3 F4 I1 I2 I3 I4

C
P

U
 T

im
e 

(S
ec

o
n

d
s)

Thread

Lock Hold Time

Wait + Other

Nearly six times more CPU allocated 
to insert threads than find threads Insert threads 

dominate lock usage



Causes of scheduler subversion

• Two reasons

12



Reason #1 - Different critical section lengths

• Threads spend varied amount of time in 
critical section

• Thread dwelling longer in critical section 
becomes dominant user of CPU

13

0
11
22
33
44

Put/Get Insert/Find

R
at

io

LevelDB UpScaleDB

Ratio of median critical 
section times for various 
systems



Reason #2 - Majority locked run time

• Time spent in critical section is high -> contention

• Lock algorithm determines which threads scheduled

• Common case in many applications and OS 1,2,3,4

14

1. Lock–Unlock: Is That All? A Pragmatic Analysis of Locking in Software Systems. ACM Trans. Comput. Syst.,36(1), March 2019
2. Remote Core Locking: Migrating Critical-Section Execution to Improve the Performance of Multithreaded Applications. USENIX ATC 2012
3. Understanding Manycore Scalability of File Systems, USENIX ATC 2016
4. Non-scalable locks are dangerous. Linux Symposium, 2012



• Introduction

• The Problem – Scheduler Subversion

• The Solution – Scheduler-Cooperative Locks

• Evaluation

• Conclusion

15



Scheduler-Cooperative Locks (SCLs)

• Lock opportunity
• Amount of time thread holds lock or could acquire lock when free

• Important metric to measure lock usage fairness

• Philosophy
• Prevent dominant users from acquiring lock

• Ensure equal “lock opportunity” to every user

• Design locks that aligns with scheduling goals

• Three important design components

16



#1 - Track lock usage

• Track time spent in critical section

17



#1 - Track lock usage

• Track time spent in critical section

18

scl_lock()
{

…..
lock.start_cs = now()

}

scl_unlock()
{

…..
end_cs = now()
cs_time = end_cs – lock.start_cs
…..

}



#1 - Track lock usage

• Track time spent in critical section

• Tracking helps to identify dominant 
users

19

scl_lock()
{

…..
lock.start_cs = now()

}

scl_unlock()
{

…..
end_cs = now()
cs_time = end_cs – lock.start_cs
…..

}



#1 - Track lock usage

• Track time spent in critical section

• Tracking helps to identify dominant 
users

• Tracking flexible
• Any schedulable entity such as 

threads, processes, containers

• Type of work – readers or writers

20

scl_lock()
{

…..
lock.start_cs = now()

}

scl_unlock()
{

…..
end_cs = now()
cs_time = end_cs – lock.start_cs
…..

}



#2 – Penalize users 

• Penalize dominant users

21



#2 – Penalize users 

• Penalize dominant users

• Penalty calculated while releasing lock

• Penalty applied while acquiring lock

• Prevent user from acquiring lock

22

scl_lock()
{

if (penalty) {
sleep-until-penalty-time

}
…..
lock.start_cs = now()

}

scl_unlock()
{

…..
end_cs = now()
cs_time = end_cs – lock.start_cs
calculate penalty, penalty-time
…..

}



#2 – Penalize users 

• Penalize dominant users

• Penalty calculated while releasing lock

• Penalty applied while acquiring lock

• Prevent user from acquiring lock

• Penalty based on scheduling goals

23

scl_lock()
{

if (penalty) {
sleep-until-penalty-time

}
…..
lock.start_cs = now()

}

scl_unlock()
{

…..
end_cs = now()
cs_time = end_cs – lock.start_cs
calculate penalty, penalty-time
…..

}



#3 – Dedicated window of opportunity

24

• Lock slice – dedicated window of 
opportunity to every user



#3 – Dedicated window of opportunity

25

• Lock slice – dedicated window of 
opportunity to every user

P0

P1



#3 – Dedicated window of opportunity

26

• Lock slice – dedicated window of 
opportunity to every user

P0

P1

Lock slice (2ms)

Time

Slice owner is lock owner



#3 – Dedicated window of opportunity

27

• Lock slice – dedicated window of 
opportunity to every user

• Owner can acquire lock multiple 
times within a slice without penalty

P0

P1

Lock slice (2ms)

Time

Slice owner is lock owner

Lock acquisition is 
fast-pathed improving 
throughput



#3 – Dedicated window of opportunity

28

• Lock slice – dedicated window of 
opportunity to every user

• Owner can acquire lock multiple 
times within a slice without penalty

P0

P1

Lock slice (2ms)

Lock slice (2ms)

Time

Slice ownership transferred to P1



#3 – Dedicated window of opportunity

29

• Lock slice – dedicated window of 
opportunity to every user

• Owner can acquire lock multiple 
times within a slice without penalty

P0

P1

Lock slice (2ms)

Lock slice (2ms)

Time

Size of individual critical 
section can vary



#3 – Dedicated window of opportunity

30

• Lock slice – dedicated window of 
opportunity to every user

• Owner can acquire lock multiple 
times within a slice without penalty

• Slice ownership alternates between 
users

P0

P1

Lock slice (2ms)

Lock slice (2ms)

Lock slice (2ms)

Time

Wait-times depends 
on lock slice size



#3 – Dedicated window of opportunity

31

• Lock slice – dedicated window of 
opportunity to every user

• Owner can acquire lock multiple 
times within a slice without penalty

• Slice ownership alternates between 
users

P0

P1

Lock slice (2ms)

Lock slice (2ms)

Lock slice (2ms)

Time

Lock slice
- Fixed-sized virtual critical section
- Transferred to next owner based 

on scheduling policy



SCLs Implementation

• Three different implementations
• u-SCL – User-space mutex replacement
• RW-SCL – Reader-Writer Scheduler-Cooperative Lock
• k-SCL – Kernel version of u-SCL

• New and existing optimization techniques

• u-SCL
• Spin-and-park – To minimize CPU time spent while waiting
• Next-thread prefetch – Next owner ready before slice ownership handoff

• RW-SCL
• Per NUMA node counters

• More details in paper

32



• Introduction

• The Problem – Scheduler Subversion

• The Solution – Scheduler-Cooperative Locks

• Evaluation

• Conclusion

33



Evaluation

• Same UpScaleDB experiment

34

Workload – 8 threads (4 insert 
threads + 4 find threads) pinned on 
4 CPU, equal CPU allocation

0

5

10

15

20

25

30

F1 F2 F3 F4 I1 I2 I3 I4

C
P

U
 T

im
e

 (
Se

co
n

d
s)

Thread

Wait + Other

Lock Hold Time

TPUT - 22.2K

Mutex

TPUT - 11.7K



Evaluation

• Same UpScaleDB experiment

35

Workload – 8 threads (4 insert 
threads + 4 find threads) pinned on 
4 CPU, equal CPU allocation

0

5

10

15

20

25

30

F1 F2 F3 F4 I1 I2 I3 I4

C
P

U
 T

im
e

 (
Se

co
n

d
s)

Thread

Wait + Other

Lock Hold Time

F1 F2 F3 F4 I1 I2 I3 I4
Thread

TPUT - 22.2K

TPUT - 695K

Mutex u-SCL

TPUT - 11.7K



Evaluation

• Same UpScaleDB experiment

36

Workload – 8 threads (4 insert 
threads + 4 find threads) pinned on 
4 CPU, equal CPU allocation

0

5

10

15

20

25

30

F1 F2 F3 F4 I1 I2 I3 I4

C
P

U
 T

im
e

 (
Se

co
n

d
s)

Thread

Wait + Other

Lock Hold Time

F1 F2 F3 F4 I1 I2 I3 I4
Thread

TPUT - 22.2K

TPUT - 35K

TPUT - 695K

Mutex u-SCL

TPUT - 11.7K



Evaluation

• Same UpScaleDB experiment

37

Workload – 8 threads (4 insert 
threads + 4 find threads) pinned on 
4 CPU, equal CPU allocation

0

5

10

15

20

25

30

F1 F2 F3 F4 I1 I2 I3 I4

C
P

U
 T

im
e

 (
Se

co
n

d
s)

Thread

Wait + Other

Lock Hold Time

F1 F2 F3 F4 I1 I2 I3 I4
Thread

Max Lock 
Hold Time

TPUT - 22.2K

TPUT - 35K

TPUT - 695K

Mutex u-SCL

TPUT - 11.7K



Results summary

• Lock usage fairness – Allocate CPU proportionally even in extreme 
cases

• Lock overhead - Efficient and scales well up to 32 CPU

• Lock slice sizes vs. Performance
• Large slice size – Higher throughput

• Small slice size – Low Latency

• Demonstrate real-world utility of SCLs
• Port RW-SCL to KyotoCabinet

• Replace global file-system rename lock with k-SCL in Linux kernel

38



• Introduction

• The Problem – Scheduler Subversion

• The Solution – Scheduler-Cooperative Locks

• Evaluation

• Conclusion

39



Conclusion

• Lock usage determines CPU allocation subverting scheduling goals

• Introduce Scheduler-Cooperative Locks (SCL) to address the problem

• Evaluation shows the performance characteristics and versatility of 
SCLs

• Future work – Build SCLs that support other scheduling goals

40

Source - https://research.cs.wisc.edu/adsl/Software/



Thank you ☺

41


