
The Problem
Scheduler Subversion 

Locks determine which 
process is scheduled

❖ Example: 2 processes P0 & P1 
accessing a ticket lock, default priority,
P1 holds lock for twice as long as P0

The Solution
Scheduler-Cooperative Locks 

Align lock usage with CPU 
scheduling goals

❖ Important design components
❖ Track lock usage of all users
❖ Penalize dominant users
❖ Lock slice – dedicated window of 

opportunity

❖ Implement 3 different types of SCL
❖ 2 user space – u-SCL, RW-SCL
❖ 1 kernel – k-SCL

P0 CS 0 CS 0 CS 0

P1 CS 1 CS 1

Avoiding Scheduler Subversion using 
Scheduler-Cooperative Locks

Yuvraj Patel, Leon Yang, Leo Arulraj, 
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael Swift

Computer Sciences Department, University of Wisconsin-Madison

Conclusion
❖ Locks usage determines 

CPU allocation subverting 
scheduling goals

❖ Introduce Scheduler-
Cooperative Locks that 
aligns with CPU 
scheduling goals

❖ Evaluation shows the 
performance capabilities 
and versatility of SCLs

❖ SCL can support any type 
of schedulable entity -
thread/process/container

❖ Source code -
http://tiny.cc/o3ocnz

Evaluation
Example result – UpScaleDB + Linux CFS

4 CPU, 4 threads – insert, 4 threads – find, default priority

F1 F2 F3 F4 I1 I2 I3 I4
u-SCL

0
5

10
15
20
25
30

F1 F2 F3 F4 I1 I2 I3 I4

C
P

U
 T

im
e 

(S
ec

o
n

d
s)

Mutex

Wait + Other

Lock Hold Time

TPUT - 22.2K

TPUT - 35K

TPUT - 695KTPUT - 11.7K

Results summary
❖ Allocate CPU proportionally in extreme cases
❖ Efficient and scale well at large scale 
❖ Handles interactive and batching threads
❖ Demonstrate real-world utility

CPU Allocation

P0 CS 0 CS 0

P1 CS 1 CS 1
Lock Slice

Penalize P1Track usage

❖ Two reasons:
❖ Different critical 

section sizes
❖ Majority locked 

run time
❖ Many systems show 

above properties


