
The Problem
Scheduler Subversion 

Locks determine which 
process is scheduled

❖ Example: 2 processes P0 & P1 
accessing a ticket lock, default priority,
P1 holds lock for twice as long as P0

The Solution
Scheduler-Cooperative Locks 

Align lock usage with CPU 
scheduling goals

❖ Important design components
❖ Track lock usage of all users
❖ Penalize dominant users
❖ Lock slice – dedicated window of 

opportunity

❖ Implement 3 different types of SCL
❖ 2 user space – u-SCL, RW-SCL
❖ 1 kernel – k-SCL
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Conclusion
❖ Locks usage determines 

CPU allocation subverting 
scheduling goals

❖ Introduce Scheduler-
Cooperative Locks that 
aligns with CPU 
scheduling goals

❖ Evaluation shows the 
performance capabilities 
and versatility of SCLs

❖ SCL can support any type 
of schedulable entity -
thread/process/container

❖ Source code -
http://tiny.cc/o3ocnz

Evaluation
Example result – UpScaleDB + Linux CFS

4 CPU, 4 threads – insert, 4 threads – find, default priority
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Results summary
❖ Allocate CPU proportionally in extreme cases
❖ Efficient and scale well at large scale 
❖ Handles interactive and batching threads
❖ Demonstrate real-world utility

CPU Allocation
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Lock Slice

Penalize P1Track usage

❖ Two reasons:
❖ Different critical 

section sizes
❖ Majority locked 

run time
❖ Many systems show 

above properties


