
Performance-Aware Cluster Scheduling
Diana Andreea Popescu
diana.popescu@cl.cam.ac.uk
University of Cambridge, UK

Andrew W. Moore
andrew.moore@cl.cam.ac.uk
University of Cambridge, UK

Given the network latency variability observed in data cen-
ters, applications’ performance is also determined by their
placement within the data centre. We present NoMora, a
cluster scheduling architecture whose core is represented
by a latency-driven, application performance-aware cluster
scheduling policy. The policy places the tasks of an appli-
cation taking into account the expected performance based
on the measured network latency between pairs of hosts in
the data center. Furthermore, if a tenant’s application experi-
ences increased network latency, for example due to network
congestion, and thus lower application performance, their
virtual machines may be migrated to a better placement. We
show that our policy improves the overall average applica-
tion performance compared to other policies.

Di�erentmechanisms to provide predictable network band-
width and latency for tenants to ensure predictable perfor-
mance for applications have been proposed over the years [5–
7]. In this work, we change the viewpoint: if the tenant wants
a certain performance for their application, what network
conditions does the application need?

Architecture.We combine three elements in the NoMora
cluster scheduling architecture. 1. Functions that predict ap-
plication performance dependent upon network latency. Ap-
plications react di�erently to network latency [2, 8]. We
modeled the relationship between application performance
and network latency through functions that describe this
relationship, using polynomial �tting on the data obtained
through experiments run on a custom testbed. Such a perfor-
mance function can be described as f (network_latenc�) =
normalised_application_per f ormance where f is a polyno-
mial function. While we determined these dependencies
through experiments for particular applications and exper-
imental settings, we expect that the tenants could specify
them, or these functions could be inferred automatically
through recent machine learning techniques.
2. Network latency measurement system. Data center net-
work latency measurement systems like Pingmesh [1], or
PTPmesh [3] can provide the most recently measured net-
work latency between hosts.
3. Latency-driven, application performance-aware, policy. We
propose a new latency-driven, application performance-aware
policy, whose goal is to place distributed applications in a
data centre in a manner that gives them improved appli-
cation performance. The cluster scheduling problem was
modeled as a minimum-cost maximum-�ow problem in pre-
vious work [4], and we describe brie�y how this mapping
takes place. A submitted taskTi, j , representing task j of job �i ,

is represented by a vertex in the graph (�ow network), and it
generates one unit of �ow. A sink S drains the �ow generated
by the submitted tasks. A task vertex sends a unit of �ow
along a path composed of directed arcs in the graph to the
sink S . The path can pass through a vertex that correponds
to a machine (host) Mm , meaning the task is scheduled to
run on that machine, or it can pass through a special vertex
for the unscheduled tasks of that job Ui , meaning that the
task is not scheduled. The cost of an arc between a task and
a machine is assigned according to a scheduling policy. The
min-cost max-�ow solver operates on the graph, the tasks
being scheduled on machines according to the cost on the
arcs by routing �ow through the graph to the sink.

Next, we give a high level overview of our scheduling pol-
icy. When a job is submitted, the root taskTi,0 of the applica-
tion (the server or the master) is scheduled immediately on
any available machine. After being scheduled, the root task
has an arc in the graph to the machine it is running on. The
other jobs’ tasks are waiting for the root to be scheduled �rst,
and they do not have any arcs towards resources initially. Af-
ter the root task is scheduled, each taskTi, j , j > 0 (the clients
or the workers) will be scheduled. Assuming the root task is
running on machineMroot , for a task Ti, j that can be sched-
uled on machineMm , the cost of the arc from Ti, j toMm is
computed as c(Ti, j ,Mm) = 1/f (max(latenc�(Mroot ,Mm))),
where the f value is the expected application performance
for the measured network latency between machineMroot
and machineMm . We invert the f value, since if the perfor-
mance is higher, the cost on the arc should be lower, meaning
the task will be scheduled using that arc. Since there are mul-
tiple paths between two machines in data centers, due to
Equal-Cost Multi-Path (ECMP), we cannot know which of
the available paths between VMs will be taken by the applica-
tion’s �ows. Thus, to be conservative, we use the maximum
network latency value measured between the two machines.

Results.We compute the average application performance
for the job’s total runtime as the application performance
determined by the measured network latency in every mea-
surement interval divided by the maximum application per-
formance that could be achieved in every measurement in-
terval. Using the Google [9] cluster workload trace with
12,500 machines, augmented with the application perfor-
mance predctions dependent upon network latency derived
from our experiments, the NoMora policy improves overall
average application performance by up to 13%, and up to
42.4% when VM migration is enabled, compared to a random
placement policy.

1



Conference’17, July 2017, Washington, DC, USA Popescu et al.

References
[1] C. Guo et al. 2015. Pingmesh: A Large-Scale System for Data Center

Network Latency Measurement and Analysis. In ACM SIGCOMM 2015.
[2] D. A. Popescu et al. 2017. Characterizing the impact of network latency

on cloud-based applications’ performance. Technical Report UCAM-CL-
TR-914. University of Cambridge, Computer Laboratory.

[3] D. A. Popescu et al. 2017. PTPmesh: Data Center Network Latency
Measurements Using PTP. In IEEE MASCOTS. IEEE.

[4] I. Gog et al. 2016. Firmament: Fast, Centralized Cluster Scheduling at
Scale. In OSDI 16. 99–115.

[5] K. Jang et al. 2015. Silo: Predictable Message Latency in the Cloud. In

SIGCOMM 2015 (SIGCOMM ’15). ACM, New York, NY, USA, 435–448.
[6] Kumar, Praveen et al. 2019. PicNIC: Predictable Virtualized NIC. In

Proceedings of the ACM SIGCOMM (SIGCOMM ’19). ACM, New York,
NY, USA, 351–366.

[7] Mogul, Je�rey C. et al. 2012. What We Talk About when We Talk About
Cloud Network Performance. SIGCOMM Comput. Commun. Rev. 42, 5
(Sept. 2012), 44–48.

[8] N. Zilberman et al. 2017. Where Has My Time Gone?. In Passive and
Active Measurement (PAM). Springer.

[9] JohnWilkes. 2011. More Google cluster data. Google research blog. (Nov.
2011). Posted at h�p://googleresearch.blogspot.com/2011/11/more-
google-cluster-data.html.

2

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

