
A Secure Network Stack for the Untrusted Cloud

Keita Aihara
*

k.k.ahihara@sslab.ics.keio.ac.jp
Keio University, Japan

Pierre-Louis Aublin

pl@sslab.ics.keio.ac.jp
Keio University, Japan

Kenji Kono

kono@sslab.ics.keio.ac.jp
Keio University, Japan

Introduction. Trusted execution is indispensable to service

providers that deploy their applications on third-party com-

puting platforms such as Amazon EC2, Google Cloud, or

Microsoft Azure. Service providers expect confidentiality and

integrity of their applications to be guaranteed by platform

providers. Although platform providers are not inherently ma-

licious, they are a target of attacks yet securing their comput-

ing platforms is a difficult task. The unfortunate consequence

is frequent data leakage or corruption of Internet services.

Recent years have seen the development of Trusted Ex-

ecution Environments (TEE), in particular with Intel SGX,

ARM TrustZone or AMD SME/SEV. TEEs are special se-

cure execution environments isolated from the rest of the

system, including privileged software. By leveraging a TEE,

service providers can protect their applications from poten-

tially malicious privileged software; and platform providers

can guarantee stronger security to their customers.

Many TEE-based applications have been proposed in the re-

cent years. Some of these systems embed a full network stack

inside the TEE, primarily for performance reasons and ease

of use. However they all rely on the untrusted host operating

system to provide communication capabilities.

The usage of an untrusted TCP stack has two negative

consequences: (i) no isolation from other untrusted compo-

nents (kernel or application); and (ii) no protection of the

communication metadata. First, to limit the impact of bugs,

security breaches or data leakage, it is of prime importance to

isolate the TCP stack from the kernel and from the applica-

tions. Second, existing protocols such as TLS or IPsec do not

guarantee the integrity or confidentiality of the metadata. This

is a problem, as an attacker could learn sensitive information

from the metadata, despite the data being encrypted.

Our proposal. To tackle this problem we describe Shinkansen,

a Secure TCP/IP stack design for commodity machines that

provides integrity and confidentiality guarantees from a mali-

cious software stack from the network card to the final appli-

cation by leveraging a TEE. Shinkansen replaces the untrusted

network stack with a trusted network stack and uses a special

NIC with encryption functionalities. This can be implemented

(but not required) by a smartNIC or FPGA: our goal is to min-

imize the amount of processing at the NIC to facilitate our

system adoption. Shinkansen furthermore proposes a simple

API to the final application for user-specific computation such

as debugging, auditing or data exfiltration prevention.

Shinkansen meets the following objectives:

1) Security of communications: Shinkansen ensures the

integrity and confidentiality of both the data and metadata.

2) Isolation: the TCP stack and application are executed in

two different protection domains.

3) Performance: Shinkansen provides good performance.

4) Debugging and auditing: Shinkansen provides an API

for application-specific debugging and auditing.

Execution flow. IP packets are received by a network card

with encryption functionalities. It signs, encrypts and shares

the packets with the main memory. A fast user-space packet

I/O library forwards them to the TCP stack. It does not in-

volve the operating system nor inspects the packets during

communications. A secure network stack, executing inside a

TEE, processes the IP packets, recreating the TCP stream. It

can furthermore execute application-specific processing for

debugging or auditing purposes. The TCP stream is finally

exchanged with the application (executing in its own enclave)

via TCP buffers allocated in untrusted memory. As we assume

the application uses a secure communication protocol such

as TLS, the content of the TCP buffers is protected both for

confidentiality and integrity.

Application specific API. Shinkansen secure network stack

provides a stream and packet processing API for application

specific processing. It targets 3 classes of functionalities: (i)

debugging; (ii) logging; and (iii) security. Application devel-

opers can use this API to implement specific processing.

For security reasons the application specific functions can-

not interact with code outside of the TEE. This is to prevent

code that would extract sensitive information, such as the TCP

packets or the plaintext application payload, to the untrusted

environment. the code is automatically checked at compile

time for the absence of function calls outside the TEE.

Implementation. We have implemented a prototype of our

design leveraging Intel SGX, the mTCP user-level TCP stack

and the DPDK library. To provide good performance and limit

the impact of faults, Shinkansen (i) minimizes the amount

of code and data in the TEE; (ii) minimizes the number of

transitions between the untrusted and trusted environments;

(iii) implements batching of network functionalities; and (iv)

implements a novel enclave call delegation mechanism that

avoids enclave transitions.

Evaluation. We consider three real-world applications: the

Lighttpd web server, the Memcached key-value store and

a video streaming service. Using an SGX-capable proces-

sor and a 10Gbps network link, our preliminary evaluation

demonstrates that Shinkansen offers strong security guaran-

tees while reducing the performance by less than 9%.

ò
Presenter and student

1


