
Smart Data Filtering in the RIPE Atlas Measurement
Platform

Spyridon-Andreas Siskos
asiskos@ics.forth.gr

University Of Crete / ICS-FORTH

Petros Gigis
p.gkigkis@cs.ucl.ac.uk

University College London / ICS-FORTH

Lefteris Manassakis
le�man@ics.forth.gr

ICS-FORTH

Xenofontas Dimitropoulos
fontas@ics.forth.gr

University Of Crete / ICS-FORTH

1 INTRODUCTION
Researchers and network operators use data plane measure-
ment tools (e.g. traceroute, ping) for network monitoring and
diagnostics. Moreover, platforms such as RIPE Atlas [2] and
CAIDA’s Archipelago [1] provide access to data plane mea-
surement tools by leveraging the highly distributed footprint
of their Vantage Points (VPs) around the globe.

We focus on extending the functionality of the RIPE Atlas
platform, since it has the largest amount of VPs, reaching
⇠11k worldwide [2], allows users to make their own mea-
surement campaigns, and also provides access to the results
through a structured REST API.

The structure of the RIPE Atlas API allows users to collect
the results of their own measurements. However, it does not
provide advanced �ltering that would allow users to eas-
ily pinpoint and explore results generated by other users.
The current API supports �ltering per target address and a
limited number of parameters (e.g. start/end timestamp). It
lacks more advanced and sophisticated �ltering. For exam-
ple, users are interested in results between speci�c source-
destination Autonomous Systems (AS) pairs. By getting the
data �ltered only by destination as the current practice dic-
tates, it adds signi�cant overhead to users, since they must
download and parse a vast amount of results that are irrele-
vant to their use case.

In this work, we aim to provide an open-source frame-
work on top of the RIPE Atlas API that will enable advanced
�ltering of results and will allow users to explore the RIPE
Atlas collected data more e�ciently.

2 FRAMEWORKWORKFLOW
The current prototype is developed using Python3, Post-
greSQL and the Django Framework combined with the Swag-
ger API as multi-container Docker application. As shown
in Fig.1 we download and crawl the measurement metadata
from the RIPE Atlas platform. We analyze and enrich them
by adding extra meta-information that will later allow us to
perform advanced queries. Speci�cally, we add current VP
information (e.g. AS, IP pre�x, location). We �nally store the
enriched data into a relational database which is accessible
through a structured REST API.

Figure 1. Framework Work�ow

Fig.2 depicts the user-prototype interaction.
1. User issues an advanced query to our API (e.g. fetch

all traceroutes from AS8522 towards AS32934).
2. The tool translates the query to a set of URLs contain-

ing appropriate �lter parameters pointing to the RIPE
Atlas API, which will return only the related results.

3. By iterating to the set of these URLs, user retrieves all
available results matching his initial query.

Figure 2. Work�ow of a user request

3 CONCLUSIONS AND FUTUREWORK
Although RIPE Atlas is a well-established measurement plat-
form, there is still room for improvement in result �ltering.
As future work, we plan to extend our API with more mea-
surement types, improve performance and scalability, and
use the RIPE Atlas Stream [3] for real time result processing.

References
[1] CAIDA. 2020. Archipelago (Ark) Measurement Infrastructure. h�ps:

//www.caida.org/projects/ark/.
[2] RIPE NCC. 2020. RIPE Atlas Platform. h�ps://atlas.ripe.net.
[3] RIPE NCC. 2020. RIPE Atlas Result Streams. h�ps://atlas.ripe.net/docs/

result-streaming/.

https://www.caida.org/projects/ark/
https://www.caida.org/projects/ark/
https://atlas.ripe.net
https://atlas.ripe.net/docs/result-streaming/
https://atlas.ripe.net/docs/result-streaming/

