Toward On-demand Nested Virtualization for Live-Refreshing Cloud Systems

Ryosuke Yasuoka (University of Tsukuba), Takaaki Fukai, Takahiro Shinagawa (The University of Tokyo)

Background

- VMM needs to be refreshed (=rebooted) for applying patches, upgrading, rejuvenation
- VMs live migrated avoids stopping VMs
- Problem: Heavy network load

Our goal

1. Keep the advantages of nested virtualization
2. Eliminate the nested virtualization overhead during normal runtime

Proposal: On-demand Nested Virtualization with hardware partitioning

In refreshing the VMM

1. Virtualize
2. Create partition & boot L1 VMM #1
3. Migrate VMs
4. Reboot L1 VMM #0

During normal runtime

1. Virtualize
2. Create partition & boot L1 VMM #1
3. Migrate VMs
4. Reboot L1 VMM #0

Performance evaluation: KVS throughput

- Workload: YCSB benchmark (Read : Update = 50%:50%)
- KVS: Redis

<table>
<thead>
<tr>
<th></th>
<th>Throughput [ops/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-nested KVM</td>
<td>8000</td>
</tr>
<tr>
<td>NestedKVM</td>
<td>4550 (↓36.2%)</td>
</tr>
<tr>
<td>Proposal (Nested)</td>
<td>4200 (↓4.1%)</td>
</tr>
<tr>
<td>Proposal (Devirt)</td>
<td>3980 (↓2.0%)</td>
</tr>
</tbody>
</table>

Implementation

- L0 VMM: Based on TinyVisor [1]
 (diff: +3318, -48)
- L1 VMM #0: Custom KVM (diff: +292, -0)
- L1 VMM #1 and L2 guest OS: no change

[1] https://osdn.net/projects/tinyvisor/

Future work

- Performance measurement on VMM refreshing
- Gradual resource reallocation
- Zero-copy migration