
Toward On-demand Nested Virtualization
for Live-Refreshing Cloud Systems

Ryosuke Yasuoka
yasuoka@osss.cs.tsukuba.ac.jp

University of Tsukuba

Takaaki Fukai
fukai@os.ecc.u-tokyo.ac.jp
The University of Tokyo

Takahiro Shinagawa
shina@ecc.u-tokyo.ac.jp
The University of Tokyo

Extended Abstract
Virtual machine monitors (VMM) are a crucial component
in cloud systems. To achieve high availability, VMMs should
run continuously without stopping. However, VMMs must
be rebooted frequently for self-refreshing, such as applying
security patches, upgrading VMMs, and rejuvenating the en-
tire systems. Since stopping cloud services while rebooting
VMMs is unacceptable, live-refreshing cloud systems includ-
ing VMMs is a practical and vital issue for cloud vendors [2].
VM live migration is a generic and e�ective approach to
refreshing VMMs without stopping virtual machines (VM)
running on them. However, traditional VM live migration
requires many spare physical machines and vast network
resources to transfer VM images up to several GiB each [2].
Recent works exploit nested virtualization to run two

VMMs on a single machine [1]. This approach signi�cantly
reduces the memory copy cost for VM migration. Unfortu-
nately, current nested virtualization still incurs high over-
head due to complex multi-level virtualization. Since the
nested virtualization overhead is incurred continuously even
when only one VMM is running, reducing the overhead dur-
ing long normal runtime is indispensable. However, eliminat-
ing nested virtualization overhead in the traditional VMM
architecture is di�cult because the upper (L1) VMM heav-
ily depends on the execution environment provided by the
lower (L0) VMM. In addition, since traditional VMMs are
large and complex, aging of the L0 VMM becomes a problem.
In this poster, we propose a new concept of on-demand

nested virtualization, which allows disabling nested virtu-
alization during normal runtime and temporary enabling
nested virtualization when refreshing VMMs. The main chal-
lenges of this approach are how to enable and disable nested
virtualization dynamically and how to run the two VMMs
after enabling nested virtualization.
We achieved dynamic enabling and disabling of nested

virtualization by swapping the VMM states of the hardware-
assisted virtualization of the L0 and L1 VMM. In disabling
and enabling nested virtualization, we must avoid changing
the hardware interface exposed to the L1 VMM so that the L1
VMM can continue to run. To achieve this, the L0 VMM par-
titions hardware resources (CPU, memory, and I/O devices)
into two logical partitions and assigns a partition to each L1
VMM instead of fully-virtualizing hardware. Avoiding full
hardware virtualization also contributes to simplifying the
implementation and reducing the aging of the L0 VMM. To

Figure 1. Redis YCSB

run the second L1 VMM in addition to the �rst L1 VMM, the
L0 VMM partially virtualizes hardware resources such as a
physical address space, interrupt controller, and �rmware.
We implemented a prototype of our proposal on Intel

CPUs. We omit the protection between the L0 and L1 VMMs
in nested virtualization because we assume cloud administra-
tors manage both L0 and L1 VMMs. It signi�cantly simpli�es
the implementation and improves performance. We used
KVM as the L1 VMM and appended a small piece of code to
implement the starting point of the nested virtualization. For
dynamic resource partitioning, we exploited hot plug/unplug
features of Linux running as the host OS of KVM.
We believe that our work is the �rst one to propose the

concept of on-demand nested virtualization as well as demon-
strating its feasibility by presenting its design, implementa-
tion, and useful application.
As a preliminary evaluation, we measured the perfor-

mance of Redis (version 4.0.2) using the YCSB benchmark
client (version 0.12.0). The workload used was A — update
heavy where read and write operations were both 50%. Fig-
ure 1 shows the result. In “Nested KVM,” the performance
was signi�cantly degraded; the overhead was 36.2%. On the
other hand, “Proposal (Nested)” incurred only 4.1% overhead,
although the standard deviation was slightly larger. The over-
head in “Proposal (Devirt)” was only 2.0%, and the standard
deviation was similar to that of “Non-nested KVM.”

References
[1] Spoorti Doddamani et al. 2019. Fast and Live Hypervisor Replacement.

In Proc. 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2019). 45–58. h�ps://doi.org/10.1145/
3313808.3313821

[2] Xiantao Zhang et al. 2019. Fast and Scalable VMM Live Upgrade
in Large Cloud Infrastructure. In Proc. 24th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19). 93–105. h�ps://doi.org/10.1145/3297858.3304034

1

https://doi.org/10.1145/3313808.3313821
https://doi.org/10.1145/3313808.3313821
https://doi.org/10.1145/3297858.3304034

