

AE-NIDS : Automated Evolving SDN-based Network Intrusion Detection System

Suyeol Lee, Seungwon Shin, Korea Advanced Institute of Science and Technology, KAIST

1. Feature Extractor (From Kitsune, NDSS 2018)

Feature Extractor : extract the current behavior of a data stream

1. Damped Incremental Statistics : O(1) for updating

2. Extracted Features

- Bandwidth of the outbound traffic
- Bandwidth of the outbound and inbound traffic together
- Packet rate of the outbound traffic
- Inter-packet delays of the outbound traffic

2. Challenges and Contributions

2. AE-NIDS design

Challenges

- Trade off between high accuracy and high recall
- Lack of self-learning
- Inefficient learning algorithm
- No consideration of distributed SDN environment

Contributions

- New system with AAE and distance-based automated learning
- Introduce GAN for augmenting imbalanced data and continual learning(EWC)
- Introduce one tool for classification and latent vector learning; AAE
- Federated learning for scalabitiy

3. AE-NIDS procedures (4) Cluster 1. Pre-training procedure **3** Collect **SDN distributed core 1** Train parameter of AAE Initial storage for window Extractor Packet Control plane led Class Packet Data plane Decode Feature Random Input GM-**2** Update parameter generator (Federated learning)

2. Execution procedure : During real operation of network

(4) **Distance > threshold**