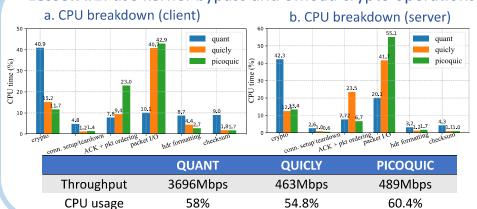

Dissecting QUIC Implementation Performance

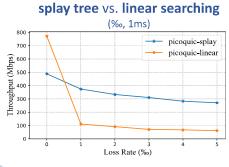
Xiangrui Yang¹, Lars Eggert², Jörg Ott³, Steve Uhlig⁴, Zhigang Sun¹, Gianni Antichi⁴


National University of Defense Technology¹, NetApp², Technical University of Munich³, Queen Mary University of London⁴

Goal: What are the **primitives in QUIC** that should be
offloaded onto **SmartNICs**?

Packet Reordering Packet Reordering Packet Obligation Packet Delay Packet Delay

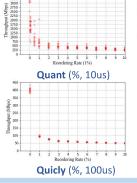
Lesson #1: use kernel-bypass and offload crypto operations.

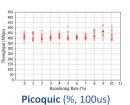


With kernel-bypass, quant reaches 7x throughput than quicly & picoquic.

- w/o kernel bypass, packet I/O costs more than **40**% of CPU overhead.
- w/ netmap, crypto operations cost more than
 40% of CPU overhead.

Lesson #2: offload the per-packet reordering process.


Throughput under pkt reordering



Tradeoffs on sw:

w/o pkt reordering/loss, picoquic with linear search performs 1.5x better;

w/ only 1‰ pkt reordering/loss, picoquic with splay tree performs 3x better.

Some more results of pkt reordering ...

Ongoing work

Measurement: multi-conn scenarios

FPGA Architecture: For QUIC acceleration

packet reordering on hw: PIFO vs PIEO?

