Dissecting QUIC implementation performance

Xiangrui Yang!, Lars Eggert?, Jorg Ott>, Steve Uhlig?, Zhigang Sun!, Gianni Antichi*

"National University of Defense Technology, CN
*Queen Mary University of London, UK

3Technical University of Munich, DE

Introduction: Recently introduced Network Interface Cards
(NICs) with programmable hardware components, e.g., FPGA,
can help to save the host CPU cycles from expensive com-
putation tasks. For this reason, nowadays they are becom-
ing commonplace in both datacenters and backbone net-
works [3]. Recognising this aspect, researchers have been
looking into leveraging programmable NICs for TCP offload,
load balancing, consensus protocols and key-value stores, to
name a few.

In this poster, we explore their role in the context of
QUIC [4], which is likely to transport a large fraction of
bytes on the Internet at the end of this year [2]. Previous
work [1] has studied the impact of just one specific com-
ponent of QUIC, i.e., crypto. In contrast, we argue that an
in-depth understanding of the costs associated to all of its
components is a necessary step towards a efficient offloading
on programmable NICs.

Experiments: We quantify the CPU overhead of three open
source implementations of QUIC, i.e., quant, quicly and pi-
coquic. All of them are written in C and support the latest
IETF draft QUIC v25/27. We ran our experiments using two
Intel Xeon Silver servers (from now on we call them A and
B) connected via dual port 10G Intel NICs. Traffic departing
from A would reach B and then return back to A. Both the
QUIC server and client were running on A and pinned to a
different CPU, while in B we installed TLEM [5] to emulate
packet re-ordering and/or loss. The key lessons learned are:

e Data copy between user and kernel space costs around
50% of total CPU usage. This can be avoided by using
kernel-bypass techniques as adopted in quant.

e With kernel-bypass optimization, crypto operations be-
come the new bottleneck, by pushing the CPU resources
usage up to 40% per connection.

o The amount of packet reordering and/or packet loss have a
significant influence on the CPU usage. This is dependent
on the specific algorithm being implemented for dealing
with out of order packets.

Lesson Learned #1: use kernel-bypass and offload crypto

operation. Quant reaches 7x higher throughput than quicly
and picoquic using similar amount of CPU resources (Tab. 1).
This is the effect of using a kernel-bypass mechanism, i.e.,
netmap, to deliver packets to the application. Fig. 1 shows
the breakdown of the total CPU usage for the three QUIC
implementations we studied. While for quicly and picoquic
the majority of the cost is associated with the data passing
between kernel and user space, with quant the overhead

2NetApp

I quant 200d T picoquic-splay
a0 quicly =~ picoquic-linear
I picoquic £

w
g

= 500 «

£ \
=

5 300

=

=]

CPU time (%)
M
3

-
s

A0S s N
el c\\ﬁc"‘ 0o 1 2 3 5

oy QoW cden0g o 1C
g PO e Loss Rate (%)

e
AP
con- S AC

Figure 1. (left) CPU usage breakdown of the client.
Figure 2. (right) Picoquic throughput under packet loss.

on CPU comes mostly from the crypto functionality. Since
quant achieves higher throughput compared to picoquic and
quicly, it is reasonable that the CPU overhead introduced by
packet-level process (e.g., checksum) goes higher.

Table 1. Maximum achievable throughput vs CPU usage.

quant quicly picoquic
throughput 3696Mbps 463Mbps 489Mbps
CPU usage 58% 54.8% 60.4%

Lesson Learned #2: offload the per-packet reordering

process. We ran two versions of picoquic (commit ID: 2e5¢3¢3
& 50c7e17) under different levels of packet reordering. The

former version uses a self-balancing binary search tree while

the latter employing linear searching to reorder packets upon

arrival. We ran our experiments imposing different percent-
ages of packet reordering. Fig. 2 shows that the throughput

drops more rapidly when using linear searching, though it

performs better in the best case scenario (no packet reorder-
ing). CPU profiling results indicate that this is mainly caused

by the complexity difference between linear and splay tree

search: (O (n?) vs O (logn), given n is the number of frames

being handled). However, linear search performs better w/o

packet reordering since it always hits the target in the first

round of the loop (O (1)).

References

[1] Deval et al. 2019. Technologies for accelerated QUIC packet processing
with hardware offloads. In Google Patents. US Patent.

[2] Eggert, Lars. 2020. Towards Securing the Internet of Things with QUIC.
In DISS. NDSS.

[3] Firestone et al. 2018. Azure accelerated networking: SmartNICs in the
public cloud. In NSDI USENIX.

[4] Langley et al. 2017. The QUIC transport protocol: Design and Internet-
scale deployment. In SIGCOMM. ACM.

[5] Rizzo et al. 2016. Very high speed link emulation with TLEM. In LAN-
MAN. IEEE.



