Lambada: Interactive Data Analytics on Cold Data using Serverless Cloud Infrastructure

Is serverless attractive for data analytics?

Simulation of scanning 1 TB from cloud storage

→ Only for interactive use!

We built Lambada to find out more!

Shared-storage database architecture with only serverless components

Challenge: low-latency burst invocation

- **2-level invocation** solves driver bottleneck
- Invoke 4 k serverless workers in < 3 s

Result: scan-heavy queries are interactive

TPC-H Q1 @ SF 10k, 1.5 TiB Parquet files, 3200 workers

→ Outperforms commercial systems in speed $(2-1000\times)$ and price $(10-100\times)$

Challenge: shuffle through cloud storage

- Workers can only communicate through cloud storage
- Prior work: "serverless shuffle unfeasable"

Result: novel serverless shuffle algorithm

	#Workers	Storage Layer	
		VMs	S3
Pocket	250	58 s	98 s
	1000	18 s	
Locus	dynamic		80 s to 140 s
Lambada	250		22 s
	1000		13 s

- Shuffle in **two levels** needs $O(P\sqrt{P})$ IOs
- → Purely serverless shuffle is competitive

DINFK **ETH** zürich