A Multi-variant Execution Environment for
In-memory Databases

Shuhei Enomoto (Student)
TUAT
Tokyo, Japan
enomoto@asg.cs.tuat.ac.jp

The multi-variant execution environment (MVEE) is a use-
ful approach to enhancing security of system software writ-
ten in unsafe languages such as C and C++. Although a num-
ber of security mechanisms, e.g. Address Space Layout Ran-
domization (ASLR) and Address/Undefined Behavior Sani-
tizers (ASan and UBSan), are supported at the kernel and
compiler level, each mechanism defends only a specific at-
tack and multiple mechanisms cannot be used at a time due
to their implementation conflicts. The MVEE allows us to
concurrently run security mechanisms by executing several
variants of the target software, integrating a security mecha-
nism into a variant, and synchronizing and monitoring their
behavior against the same inputs from disks and networks.
The previous researches have shown its effectiveness for
user-level applications [5] and OS kernels [4].

Applying the MVEE to in-memory databases (DBs), which
are a key component in modern web systems and suffer
from memory vulnerabilities [1, 2], poses a new challenge
stemming from tremendous memory space overhead. Since
in-memory DBs, e.g. memcached and redis, manage data
items and the running states on their own memory region,
the memory footprint is much larger than the legacy state-
less applications such as web servers. For example, when the
MVEE executes an in-memory DB with 512 GiB of memory
that is an instance offered in real-world cloud systems [3],
we require more than 1 TB of memory in a case where three
variants are launched. This makes it hard or sometimes im-
possible to use the MVEE for in-memory DBs and causes
inefficient resource utilization in cloud systems to perform
less service consolidation.

We present an MVEE mechanism to execute multiple vari-
ants of in-memory DBs in an memory-efficient manner. The
key behind our approach is that the memory contents of
in-memory DB’s variants are quite similar to each other;
all the variants place the same data items in their memory
heaps and most of their memory regions is occupied by the
data items. To reduce the memory usage caused by multi-
ple variant launches, our approach shares the same contents
memory among variants while simultaneously monitoring
behavior of different security-enhanced variants.

Our MVEE is driven by the following design goals; (1) en-
hances security as the same as the existing MVEE, (2) re-
stricts the total memory utilization of the MVEE as much as
possible, and (3) no modification of the application source

Hiroshi Yamada
TUAT
Tokyo, Japan
hiroshiy@cc.tuat.ac.jp

code/binary. To satisfy these goals, our mechanism lever-
ages a kernel-level page sharing feature that merges the same
contents pages into one page transparently to running ap-
plications and shares the page in a copy-on-write manner.
Our MVEE, running on the kernel, monitors and synchro-
nizes each variant at the system call level and executes the
page sharing mechanism per a certain interval. The MVEE
also hooks lock/unlock functions to support multi-threaded
applications. It forces running threads in each variant to ac-
quire locks in the same order to equalize the system call
sequences among the variants.

We conducted preliminaly experiments about memory us-
age. Our prototype runs on Linux 4.4.185 and successfully
executes two real-world in-memory DBs, memcached and
Redis, with ASan, UBSan and ASLR. The experimention us-
ing the memtier_benchmark shows that the our prototype
successfully reduce memory usages by up 56.9 % smaller
than the vanilla MVEE.

This work is ongoing. Our current focus is on a perfor-
mance issue of our mechanism. The runtime overhead stem-
ming from page sharing is 34.3 %. This is because the proto-
type reuses the existing page sharing feature of Linux and
thus there is a room for optimization. We are now design-
ing a new page sharing feature that frequent updated pages
are not merged to avoid page merging and copy-on-write
overhead.

References

[1] CVE Details. 2019. Vulnerability Details : CVE-2019-10193. https://
www.cvedetails.com/cve/CVE-2019-10193/.

[2] CVE Details. 2019. Vulnerability Details : CVE-2019-15026. https://
www.cvedetails.com/cve/CVE-2019-15026/.

[3] Amazon Web Services Inc. 2012. Amazon DynamoDB Accelerator
(DAX). https://aws.amazon.com/dynamodb/dax/.

[4] Sebastian Osterlund, Koen Koning, Pierre Olivier, Antonio Barbalace,
Herbert Bos, and Cristiano Giuffrida. 2019. kMVX: Detecting Kernel
Information Leaks with Multi-variant Execution. In Proceedings of the
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’19). Providence, RI, USA, 559-
572.

[5] Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee. 2017. Bunshin:
Compositing Security Mechanisms through Diversification. In Proceed-
ings of the 2017 USENIX Annual Technical Conference (ATC’17). USENIX,
Santa Clara, CA, 271-283.


https://www.cvedetails.com/cve/CVE-2019-10193/
https://www.cvedetails.com/cve/CVE-2019-10193/
https://www.cvedetails.com/cve/CVE-2019-15026/
https://www.cvedetails.com/cve/CVE-2019-15026/
https://aws.amazon.com/dynamodb/dax/

