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Abstract
Finesse implements a kernel bypass technique for enhancing
the performance of the popular cross-platform FUSE �le sys-
tem framework, without requiring intrusive changes to exist-
ing applications or user-mode �le systems. Further, Finesse
provides a more extensible model that permits enhancement
of applications by shifting expensive meta-data intensive
operations into the FUSE �le system. Thus, Finesse o�ers a
compelling improvement for FUSE �le system developers:
existing applications bene�t from improved performance
without program changes and without requiring �le sys-
tem source code changes, as well as permitting application
developers to exploit new functionality that is exposed by
the Finesse-enhanced �le system, as well as functionality
extensions implemented by �le systems developers.

1 Introduction
Kernel programming is notorious for being a challenging de-
velopment environment. Despite this complexity, production
use �le systems are frequently implemented for in-kernel
execution because they o�er the best performance. Program-
ming in user space is more forgiving and has a broader range
of well-supported languages, libraries, and options that are
not available in the kernel environment. The cost of using
userspace �le systems development tools, such as FUSE [3],
is typically performance. Recent work has pointed this out
and looked at various ways of improving performance [2, 4].

Prior work has explored various ways of improving perfor-
mance, including interception libraries [5] and kernel mode
extensions for optimizing data copy [1]. The idea of imple-
menting a hybrid combination of both kernel bypass and
fallback kernel support has not been explored.

2 Description
Finesse explores this hybrid environment by modifying the
behavior of the existing system libraries, which enables en-
hancing existing applications without requiring any program
changes, and by modifying the FUSE �le system library,
which enables supporting existing FUSE �le systems with a
simple recompilation.
Finesse uses a simple message passing model for imple-

menting a kernel bypass between the applications and user
mode FUSE �le systems. Existing applications can eschew us-
ing Finesse by using the original system libraries without any
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loss of functionality. Currently, we achieve replacement of ex-
isting system libraries on Linux by using the LD_PRELOAD
mechanism, which ensures the Finesse application library
is invoked �rst. When Finesse determines that the call is di-
rected to a mounted FUSE �le system, it converts that call to
a message, which is passed directly to the FUSE �le system.

We have observed up to a 61% performance improvement
with Finesse with the unlink system call, versus using the
standard FUSE interface. In this test, we added unlink sup-
port to the FUSE pass-through �le system, preallocated four
million 4KB �les in multiple directories, and measured the
time to delete them. Finesse was 29% faster than the native
�le system, and 61% faster than FUSE alone. Finesse is in
active development and we continue to increase the number
of �le system operations supported by Finesse.

3 Conclusion
Finesse combines a kernel bypass message passing architec-
ture with a fallback traditional �le systems support layer.
Preliminary results for this approach have achieved up to
62% better performance on one operations. We anticipate
further positive results as we continue expanding our work.
In future, we will also explore adding �le systems API en-
hancements that will yield both better performance as well
as novel functionality.
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