
Finesse: Kernel Bypass for File Systems
Matheus Stolet∗

University of British Columbia
stolet@cs.ubc.ca

Tony Mason†
University of British Columbia

fsgeek@cs.ubc.ca

Abstract
Finesse implements a kernel bypass technique for enhancing
the performance of the popular cross-platform FUSE �le sys-
tem framework, without requiring intrusive changes to exist-
ing applications or user-mode �le systems. Further, Finesse
provides a more extensible model that permits enhancement
of applications by shifting expensive meta-data intensive
operations into the FUSE �le system. Thus, Finesse o�ers a
compelling improvement for FUSE �le system developers:
existing applications bene�t from improved performance
without program changes and without requiring �le sys-
tem source code changes, as well as permitting application
developers to exploit new functionality that is exposed by
the Finesse-enhanced �le system, as well as functionality
extensions implemented by �le systems developers.

1 Introduction
Kernel programming is notorious for being a challenging de-
velopment environment. Despite this complexity, production
use �le systems are frequently implemented for in-kernel
execution because they o�er the best performance. Program-
ming in user space is more forgiving and has a broader range
of well-supported languages, libraries, and options that are
not available in the kernel environment. The cost of using
userspace �le systems development tools, such as FUSE [3],
is typically performance. Recent work has pointed this out
and looked at various ways of improving performance [2, 4].

Prior work has explored various ways of improving perfor-
mance, including interception libraries [5] and kernel mode
extensions for optimizing data copy [1]. The idea of imple-
menting a hybrid combination of both kernel bypass and
fallback kernel support has not been explored.

2 Description
Finesse explores this hybrid environment by modifying the
behavior of the existing system libraries, which enables en-
hancing existing applications without requiring any program
changes, and by modifying the FUSE �le system library,
which enables supporting existing FUSE �le systems with a
simple recompilation.
Finesse uses a simple message passing model for imple-

menting a kernel bypass between the applications and user
mode FUSE �le systems. Existing applications can eschew us-
ing Finesse by using the original system libraries without any

∗Student, Presenter
†Student

loss of functionality. Currently, we achieve replacement of ex-
isting system libraries on Linux by using the LD_PRELOAD
mechanism, which ensures the Finesse application library
is invoked �rst. When Finesse determines that the call is di-
rected to a mounted FUSE �le system, it converts that call to
a message, which is passed directly to the FUSE �le system.

We have observed up to a 61% performance improvement
with Finesse with the unlink system call, versus using the
standard FUSE interface. In this test, we added unlink sup-
port to the FUSE pass-through �le system, preallocated four
million 4KB �les in multiple directories, and measured the
time to delete them. Finesse was 29% faster than the native
�le system, and 61% faster than FUSE alone. Finesse is in
active development and we continue to increase the number
of �le system operations supported by Finesse.

3 Conclusion
Finesse combines a kernel bypass message passing architec-
ture with a fallback traditional �le systems support layer.
Preliminary results for this approach have achieved up to
62% better performance on one operations. We anticipate
further positive results as we continue expanding our work.
In future, we will also explore adding �le systems API en-
hancements that will yield both better performance as well
as novel functionality.

References
[1] Ashish Bijlani and Umakishore Ramachandran. 2019. Extension

Framework for File Systems in User space. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19). USENIX Association, Renton,
WA, 121–134. h�ps://www.usenix.org/conference/atc19/presentation/
bijlani

[2] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
2019. Performance and Protection in the ZoFS User-Space NVM File
System. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP 19). Association for Computing Machinery, New York,
NY, USA, 478493. h�ps://doi.org/10.1145/3341301.3359637

[3] Nikolaus Rath. [n.d.]. FUSE: Filesystem in Userspace. h�ps://github.
com/libfuse/libfuse.

[4] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. 2017.
To FUSE or Not to FUSE: Performance of User-Space File Systems.. In
FAST. 59–72.

[5] Steven A Wright, Simon D Hammond, Simon J Pennycook, Iain Miller,
John A Herdman, and Stephen A Jarvis. 2012. LDPLFS: improving
I/O performance without application modi�cation. In Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012
IEEE 26th International. IEEE, 1352–1359.

https://www.usenix.org/conference/atc19/presentation/bijlani
https://www.usenix.org/conference/atc19/presentation/bijlani
https://doi.org/10.1145/3341301.3359637
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse

